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Eleanor Raymond and Maria
Telkes. The Dover Sun House,
Dover, MA, 1948. Courtesy the
Frances Loeb Library, Harvard
Graduate School of Design.
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Someday, our appetite for energy will probably be satiated,
and energy production will remain about constant. We shall
have become a nation of philosophers.1

—Eugene Ayres, 1952

What is happening to modern architecture is that it is just
barely beginning to feel the impact of the social attitudes
and technical facts of the new world in the making.2

—George Nelson, 1948

In 1957 the office of Charles and Ray Eames produced what they
called a Solar Do-Nothing Machine. Developed as part of a mar-
keting campaign for the Aluminum Company of America (Alcoa),
it consisted of a twenty-four-inch elliptical aluminum platform
supporting moving pinwheels and star shapes, all made of brightly
colored anodized aluminum. On the side, a freestanding reflec-
tor screen of polished aluminum strips captured sunlight and
reflected it into twelve photovoltaic cells, converting sunlight
into electricity.3 As Life noted in 1958, “the toy has no use and is
not for sale, but ALCOA is sending it on tour as an enchanting
harbinger of more useful sun machines for the future.”4

On the one hand, the Eameses’ toy is a concise expression of
the place solar power occupied in the expansion of energy infra-
structure right after World War II. In the context of the strategic
development of a global oil network, of investment in nuclear
power, and of a dramatic increase in electrical grid and natural
gas pipeline capacity, solar energy was able to do, if not exactly
nothing, then certainly very little. On the other hand, the Solar
Do-Nothing Machine is symptomatic of an emergent perspective
on the relative utility of the machine, and on how design strate-
gies in architecture began to focus on the challenges presented by
increasing knowledge of global ecological contingencies; that is,
an emergent perspective on the ability of a solar machine, and of
ecotechnologies more generally, to do something and, in particu-
lar, to contribute to the development of more useful architectures
in the future.5

Concerns over the usefulness of midcentury architecture have
generally been read through the contemporaneous historical
interventions of Reyner Banham, who encouraged the architect
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to “discard . . . the professional garments by which he [sic] is 
recognized as an architect” in order to learn how to “run with
technology.”6 Banham’s embrace of technology as a means to 
provide architectural solutions to social problems was straight-
forward: rather than be solely concerned with “symbolic expres-
sion,” attention to the performative aspects of a building could
lead architects—and architectural historians—to an expanded
conception of the social consequences of design proposals. “It is
impossible to discuss the building,” Banham insisted at a gather-
ing of architectural historians and critics in 1964, “without dis-
cussing what it is for. . . . If you leave out the fact of utility, you
leave out the ‘why’ of architecture as a human activity.”7 At the
dawn of what Samuel P. Hays calls “the environmental era,”
Banham was aggressively reframing architecture as an ecotech-
nological tool—arguing for a “more useful” architecture that was
focused on directing technological innovations toward social and
environmental problems.8

A number of recent analyses offer a check to Banham’s
technophilic instrumentalism and suggest that both the looming
environmental crisis and the apparent crisis in architecture’s
technological investment allow for a more nuanced consideration
of the relationship between architecture and the machine.9 While
a clear distinction exists between the Eameses’ mechanically use-
less sun machine, operating solely as a medium for speculation,
and the immediacy of Banham’s imperative for social utility,
between these positions lies a discursive space for reassessing
those midcentury architectural practices and projects that were
experimenting with how to encounter increased knowledge of envi-
ronmental complications.10 Of interest here is a range of architec-
tural and ecotechnological experiments in the 1940s and 1950s
that failed to redefine the facts of utility—and thus were invisible

Charles and Ray Eames et al. 
The Solar Do-Nothing Machine,
1957. Courtesy John and Marilyn
Neuhart.
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to Banham—but nonetheless opened up a new space for discus-
sion about how to live in a future of global environmental 
threats. Explorations of shading devices and natural ventilation
systems, of prefabrication techniques and strategies for off-site
production, and of the organization of design methods toward a
careful placement of the building within its bioclimatic region
are all significant, albeit underanalyzed, elements of midcentury
architectural discourse.11 Such a reassessment serves not merely
to add to the database of postwar historiography but also shifts the
terms of architectural history toward the complicated economic
and political dynamics embedded in Banham’s facile distinction
between symbolic expression and technical utility.

Aside from prefabrication, these tendencies have generally not
been considered in the architectural historical literature of the
period. Too frequently, such environmental strategies have been
dismissed because they are seen to have been benign in their 
formal approach while also failing to attain technological viabil-
ity—this last either because their technological proposals were
tenuous or because the opportunity for further exploration was
overwhelmed by other geopolitical and geophysical forces. Rather
than a demonstration of Banham’s premise of architecture’s utility,
these compromised experiments are instead significant as exam-
ples of what Jean-Luc Nancy terms “ecotechnological enframing.”
Their historical import lies in the promise of reconceiving the
possibilities and limitations of the technological future. “What
forms a world today,” Nancy writes, “is exactly the conjunction
of an unlimited process of an eco-technological enframing and of
a vanishing of the possibilities of forms of life.”12 As “the con-
trolled management of natural life” has become the medium for
innovations in governance, the applied sciences, and the built
environment, the seemingly endless potential of technology has
been deployed not only toward the resolution of environmental
complications but also toward novel integrations of material, 
economic, and political possibility.13

Among these ecotechnologies, solar energy has played an
especially provocative role. This is in part because of the presumed
simplicity, remarked upon early and often in the historical
process of industrialization, of harnessing energy from the sun.14

And it is in part because of a persistent notion that solar energy
holds not only the potential to supply new forms of energy but also
to reconfigure political relationships. In one well-known example,
Langdon Winner describes how alternative energy advocates of
the 1970s saw solar energy as desirable “not only for its economic
and environmental benefits, but also for the salutary institutions
it is likely to permit in other areas of public life.”15 For Winner
and others, the democratic potential of energy from the sun was
placed in sharp contrast to the centralized systems characteristic
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of the nuclear energy industry. Solar energy has been seen, 
especially since the midcentury period, as not only a technologi-
cal means for mitigating the environmental crises that architects
have been increasingly compelled to address but also as an essen-
tial part of any vision of how to live in the environmentalist
future. The technological vicissitudes of some “solar do-something
machines” at midcentury thus suggest a usefulness less in find-
ing means to increase energy efficiency and more in catalyzing a
global discourse around the kind of world that new technologies
can form.

| | | | |

One of the most ambitious ecotechnological experiments in the
immediate postwar period was the Dover Sun House. Built about
twenty miles west of Boston in 1948, it was designed through a
collaboration between architect Eleanor Raymond (1887–1989),
a Boston modernist, and mechanical engineer Maria Telkes
(1900–1995), who, since her immigration to the United States
from Hungary in 1925, had been working on various means to
convert solar radiation to useful forms of energy.16 The house is
the best known of a remarkable variety of solar houses built 
during and right after World War II. Even among this group, the
Dover Sun House was distinct in being an “all-solar house”: it
had no conventional furnace and was completely reliant on an
innovative system of solar heating, pioneered by Telkes, that
involved the manipulation of the heat-storage capacity of phase-
change chemicals.17 Implicitly recognizing the house as both an
“enchanting harbinger” and a “useful sun machine,” Life noted
that though it is an “unconventional building . . . resembling a
modern house with a superimposed chicken coop, it may turn
out to be historic.”18

Understanding the house’s “historic” agency begins with
understanding why the house was built in a period that is usually
characterized as one of abundant energy and endless economic
growth. As numerous historians have recently begun to describe,
the period from the end of the war until about 1951—until the
extent of Middle East oil reserves became known—was one of sig-
nificant concern over the future availability of energy resources.19

Harold Ickes, longtime U.S. secretary of the interior, wrote an
article in 1943 titled “We’re Running Out of Oil!” in which he
decries the possibility of the United States becoming a “Have-
Not” nation. Ickes was concerned that domestic energy reserves
had been “bankrupted” by “the prodigal harvest” needed to win the
war.20 Anxiety over energy availability ran deep in U.S. government
agencies and numerous industries.21 Alongside familiar efforts to
expand oil, nuclear, and hydroelectric capacity, research funding
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was poured into the most unlikely of experimental projects—
not only solar housing but attempts to harness geothermal energy,
extract oil from shale, and generate energy from wind.22

Concern over the resource limits of the earth and the relative
costs and benefits of technological means to overcome them were
prominent themes in American cultural discourse just after the
war ended. In 1948, the same year the Dover house was built,
Fairfield Osborn’s Our Plundered Planet and William Vogt’s Road
to Survival were best-sellers.23 These books focus on what their
authors see as the terrifying interconnections among limited food
supply, exponential population growth, and rising industrial pol-
lution. Both books also focus on the promise of technology to
alleviate potential catastrophe.24

The promise of technology is another well-known postwar
theme, one that often focused on the house. Life published an
image in 1946 under the title “Family Utopia” in which all of the
appliances and technological amenities that wartime technology
was seen to have promised, including a helicopter for personal
commuting, are displayed in the family yard.25 The personal heli-
copter, as Andrew Shanken points out, was a frequent image in
wartime advertising as an “anticipatory tease” for the domestica-
tion of applied technology once the war, and the industrial 
production that accompanied it, had subsided.26 The helicopter
was also prominent in interpreting one of the better-known house
designs of the immediate postwar moment: Ralph Rapson’s 1945
Case Study House no. 4, known as the “Greenbelt House.” As
Esther McCoy writes, Rapson’s drawing of the house “describes
well the yearnings of the mid-1940s” for new technologies and
new ways of living—but “Rapson’s money,” McCoy continues,
“was on the wrong machine”: the husband was commuting home
from work by helicopter, while the housewife hung the laundry
out to dry in the yard, bereft of the soon-to-be-ubiquitous auto-
matic clothes dryer.27 Such images made visible the public and
professional preoccupation over the direction of technological
change in the years right after the war—not just that technologies
would develop, but how they would develop, and with what con-
sequences. The singular event in this context was the previously
unimaginable destructive force of the atomic bombs dropped on
Hiroshima and Nagasaki, an event that was seen as an occasion
both to affirm that the future would bring unforeseeable changes
and to question the kinds of futures different technologies could
bring about. 

It was by virtue of both the general concern over technological
trajectories and the specific anxieties over energy resources that
an emergent field of technocratic experts began, in the late 1940s,
to analyze the global energy future in detail. The most prominent
expert was Eugene Ayres, the director of research at Gulf Oil.28
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In 1948, while the Dover Sun House was under construction,
Ayres gave a keynote address to the American Petroleum
Institute. He suggested that the energy industry should empha-
size the distinction between “capital” energy sources—based in
accumulated energy stored underground, such as coal, oil, and
even uranium—and “income” sources, such as solar, geothermal,
and wind that, given adequate research, could be used on a con-
tinuous basis. Ayres also insisted that the “host of technologists”
working on energy efficiency needed to “focus their efforts on
income sources.”29 A graph accompanying his presentation
shows the possible contours of industrial growth and decline
based on known “capital” sources, with the viability of industrial
civilization extended, in two comparative curves, according to
moderate or intensive research programs into “income” sources.
Ayres’s analyses and writings also indicate the optimism that
was, perhaps surprisingly, characteristic of much of the period’s
research on resource scarcity. “This tiny period of earth’s life,”
Ayres wrote in Scientific American, “when we are consuming
stored riches, is over. But man’s resourcefulness continues and
becomes more potent with each passing decade. Because of this,
the future is bright.”30

| | | | |

Ayres’s bright future was not only metaphoric. In the same article,
he focused his optimism on recent solar house-heating experi-
ments that took advantage of abundant “income” energy falling
to the earth. The title of his article, “Windows,” would seem to
indicate an interest in the copious use of glass in the passive solar
houses, most notably those designed by George Fred Keck, that
had been dotting the Midwestern suburban landscape since just
before the war. Keck’s houses were narrow bar buildings with
fully glazed south-facing façades and precisely calculated roof
overhangs—sunlight penetrated deep into the house in the winter
but was blocked in the summer. His use of recently developed
insulated glass panels allowed these design innovations to also
promise significant savings in heating bills. Though Keck was 



Barber | The World Solar Energy Project, ca. 1954 71

the most prolific, the interest in passive solar houses preoccupied
the architectural profession more generally and was the subject
of numerous competitions, exhibitions, and publications in 
the period.31

But Ayres, despite the title of his article, was more interested
in active solar heating systems. The Dover Sun House was espe-
cially enticing, and an image of the house was prominently 
featured on the first page of the article. With a bank of glass plate
heat collectors—not windows—on the second floor, the house
used Telkes’s phase-change system to collect and store solar radi-
ation. Phase-change compounds change from solid to liquid at a
given temperature: as they melt, the heat is absorbed in the liquid
state and stored. When the surrounding temperature then cools,
the compounds recrystallize, and the heat is released.32 Telkes
wrote in 1945 that “the problem of the solar house is one of heat
storage,” and her phase-change experiments were focused on
developing an effective and affordable mechanism by which solar
radiation, collected when the sun was out, could be stored for use
at night or under cloudy skies—thus making solar heating a
viable replacement for fuel-based systems.33

Telkes was part of a solar energy research initiative at the
Massachusetts Institute of Technology (MIT). In 1947, she helped
build a small experimental structure intended to test the viabil-
ity of the phase-change process for space heating. As at the later
house at Dover, what looked like a bank of windows was in fact a
series of glass-faced solar heat storage panels. These panels were
the exterior face of seven thermally isolated cubicles, each test-
ing slightly different experimental parameters.34 For this first
experiment, Telkes devised an integrated solar collection and
storage unit she called the “Vertical South Panel,” designed to
store enough heat during the day to warm the structure all night.
The panel consisted of two panes of glass separated by an insu-
lating air membrane. The interior face of the panel was adjacent
to a vertical container filled with a phase-change chemical com-
pound.35 Solar radiation would heat the air membrane, which
would in turn heat the chemical container. When the salts
reached phase-change temperature, they would liquefy and store

Opposite: Eugene Ayres. “Some
Possibilities in Our Future Energy
Picture,” from Energy Sources:
The Wealth of the World, 1952.

Below: Maria Telkes using a 
candle and ice cubes to demon-
strate the phase-change transi-
tion of a chemical compound.
From Christian Science Monitor,
December 31, 1948.
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the heat. When the sun went down, an insulated curtain was
drawn into the air membrane to keep the chemicals in their 
liquid state. As the interior of the building cooled, the com-
pounds recrystallized, and the stored heat radiated from the
panel into the room.

The experiment did not go well: the phase-change temperature
of ninety degrees proved difficult to maintain; the chemical com-
pounds stratified and lost effectiveness; and the vertical containers
corroded, cracked, and leaked. After initial disappointing results,
the phase-change salts were tried in different solutions, other
chemicals were attempted, and a roof overhang was removed so
that more heat could reach the panels. The problems persisted.
Beyond these technical issues, personal animosity between
Telkes and her collaborators led to poor monitoring and lax main-
tenance. Little institutional impetus existed to make the system
work. The experiment was later discussed as part of the “some-
what questionable activities of Dr. Telkes” by administrators

reviewing the work of the solar energy research
group.36 This group decided to renovate the
building—without Telkes—and to return to a pre-
viously tested water-based heat storage system in
which rooftop panels heated water and stored it
in an insulated tank located inside the panel
structure. This heated water was distributed to
radiant ceiling tiles to warm the interior.37 This
renovated structure, also completed in 1948 (and
also discussed in Ayres’s article), demonstrated
the success of a water-based system but was both
expensive and heavily reliant on supplementary
heating sources to maintain a comfortable interior
temperature throughout the cold Boston winter.

| | | | |

Despite the apparent failure of her first phase-
change experiment, and despite being ostracized
from the MIT group, Telkes was undeterred. She
turned to architecture in order to refine the tech-
nological utility of the solar heating process.
Through engagement with architecture the utility
of solar heating was also given expanded signifi-
cance. Telkes had previously collaborated with
Raymond on the solar efficiency of a local green-
house, and after the failed experiment at MIT she
contacted the architect to explore how a new
design approach could redirect and redefine the
phase-change system.38
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Raymond was by then well known for adapting the new forms
and materials of architectural modernism to the conditions of
New England—her 1931 house for her sister, completed just after
the two took an architectural tour of Germany, was one of the first
modernist buildings in the region. Raymond’s Plywood House of
1940 was celebrated as the first anywhere to use plywood as a
primary building material. Raymond was also knowledgeable
about traditional means of managing solar incidence and other
climatic conditions—as evidenced in her exhaustive survey of
vernacular structures in her 1931 publication Early Domestic
Architecture in Pennsylvania, which focused, in part, on the role
of the roof overhang in managing seasonal climatic variations.39

Raymond’s houses of the 1940s can be placed next to the postwar
work of Walter Gropius, Harwell Hamilton Harris, Pietro Belluschi,
and many others, in order to locate the Dover Sun House as part
of a broader interest in adjusting the International Style accord-
ing to regional concerns.

At Telkes’s urging, Raymond convinced Amelia Peabody, her
client for the Plywood House and other projects, to sponsor a
phase-change experiment on one of the numerous Peabody
estates.40 A more considered architectural approach here became
instrumental to the problem of solar heating. In the first place,
Raymond insisted that “from the architect’s point of view” to give
up “any part of the south wall . . . to predetermined use” was
unfortunate. “I am especially interested,” she continued, “in any
scheme using the roof for heat storage.”41 Telkes was concerned
that the salts would be too heavy for the roof and a month later
responded with an important innovation. Suggesting a device she
named the “Sun-Wall Chemical Heat Storage” unit, Telkes pro-
posed to separate the solar absorption panel from the chemical
storage bins, using fans to draw heated air from one to the other.42

This was a significant refinement in that it dou-
bled the surface for radiating heat into the interior
and also made the system more amenable to dif-
ferent architectural treatments.

In the first scheme for the house, from February
1948, Raymond placed the collector on a set-back
A-frame roof, with chemical heat storage in “heat
bins” along the central axis. As Raymond later
explained, “the heat loss through the walls of the
bins would become radiant heat in the rooms,
instead of escaping to the attic.”43 The weight
problem was also avoided. This basic premise
was refined in a second and final scheme from
August of the same year. Here Raymond made the
plan longer and much more narrow, placing all 
of the living areas to the south and leaving them

Opposite, top: Maria Telkes and
the MIT Solar Energy Fund. Test
Building for Phase-Change Heat
Storage, Cambridge, MA, 1947.

Opposite, bottom: Maria Telkes.
Explanatory diagram of the
“Vertical South Panel,” 1945.
Courtesy the Department of
Archives and Special Collections,
Arizona State University
Libraries.

Below: Maria Telkes. “Sun-Wall
Chemical Heat Storage,” 1948.
Courtesy the Frances Loeb
Library, Harvard Graduate School
of Design.
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open to passive heat gain, with circulation to the north. In
stretching out the plan, she also significantly enlarged the col-
lector. In this scheme the heat bins were more precisely cali-
brated to load—larger near the bedroom and smaller in the
kitchen and living areas used during the day.44 The double-paned
glass on the collector again sat in front of a thin air cavity, now
faced on the other side by a black metal sheet to increase heat
absorption. Solar radiation heated the air in this collection space
and blew it into the “heat bins” below, where the salts liquefied
and stored the heat. As the interior cooled, the salts recrystal-
lized, and their heat was released. Traditional registers distrib-
uted the warmed air throughout the house.

These refinements to the phase-change system, dependent
upon the integration of the technological proposal into the archi-
tectural treatment of the house, greatly increased performance.
As before, however, many problems arose. The biggest issue was
that the intense heat in the collector led to the panel sealant dry-
ing out and thus to persistent leaks—both of water getting in 
and of heat getting out.45 A combination of Telkes’s advocacy and
Peabody’s financial resources allowed for these problems to 
be, for a time, withstood. Every summer, the whole system was
rebuilt—the salts were replaced, and the glass panel was disas-
sembled, recaulked, and put back in place.46 Fortunately, the 
tenants of the house were cousins of Telkes and, as Peabody notes

Below: Eleanor Raymond. 
“Sun Heated House” (first
scheme), February 26, 1948, 
and “Sun Heated House” 
(second scheme), August 9, 1948.
Courtesy the Frances Loeb
Library, Harvard Graduate 
School of Design.

Opposite, top: The Dover Sun
House system schematic. 
From Life, May 2, 1949.

Opposite, bottom: Amelia
Peabody (in hat), Maria Telkes,
and MIT engineering faculty 
at the party celebrating the 
opening of the Dover Sun House,
March 20, 1949. Courtesy the
Department of Archives and
Special Collections, Arizona
State University Libraries.
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in a 1952 letter to Raymond, were “frequently heroic” in with-
standing “bitter temperatures.”47 But in the spring of 1954, after
a particularly difficult winter, Peabody finally gave up. “We have
proven that solar living is possible,” she told the Boston Globe,
“though it is not very comfortable. . . . The experiment is over.”48   

| | | | |

Before any of these complications were understood—before most
of them had developed—the house opened to great acclaim in
March 1949. It recevied accolades in the professional and popu-
lar press, from Heating and Ventilating News to Architectural
Record to The Saturday Evening Post and Fortune.49 The formal
awkwardness of the house was accepted, even celebrated, as a
symbol of its utility amid the continued con-
cern over energy sources. When Raymond was
made a fellow of the American Institute of
Architects in 1950, the Dover house was
cited as one of her most important accom-
plishments.50 In 1952, Telkes was given the
first annual “Society of Women Engineers
Achievement Award” based on the perceived
success of the house.51 A 1949 cover story in
Popular Science claimed the house held “the
key to economies in home heating and [in]
the world’s fuel supply,” and, as the article
continued, “while a house cannot compete
in drama with the towering cloud of death
that rose over Hiroshima, the sun furnace
may be the more important portent of the
two.”52 A hyperbolic statement, to be sure,
but one not out of place amid the concerns of
the period. From its opening until the early
1950s, the Dover Sun House was widely 
celebrated as a working demonstration of the
potential of “income” energy sources to reor-
ganize social patterns and priorities—as evi-
dence of how “useful sun machines” could
provide new and unexpected ways of living
in the future.

The careful integration of architecture
and technology in the Dover Sun House also
made it an important cultural event. Much
as with other demonstration houses of the
late 1940s, including Breuer’s “House in the
Museum Garden” at New York’s Museum of
Modern Art (MoMA) and the prefabricated
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Lustron houses shown across the Northeast, visitors flocked to
the Dover house to expand their sense of what sort of life might
be available to them now that wartime restrictions had ended.53

The house can similarly be seen in the context of contemporane-
ous explorations of the use of glass to mediate the experience of
nature—as proposed in very different ways in Philip Johnson’s
Glass House of 1949, Paolo Soleri’s Desert House of 1950, and R.
Buckminster Fuller’s proposals for glass-enclosed domes, all of
which were featured in the catalogue for the 1953 MoMA exhibi-
tion Built in USA: Post-war Architecture.54 All of these houses
were received in public discourse as productive challenges to
familiar perceptions of how a house should look and how one
would live differently in the future. Furthermore, Fuller’s exper-
iments, Arthur Drexler wrote, “would be equipped with portable
mechanical packages for heat,” and Johnson’s famous house had
its roots not only in his well-documented attention to Mies van
der Rohe but also in his proposal for a passive solar house pub-
lished in Ladies Home Journal in 1946 and exhibited at MoMA
later that year.55 The MoMA exhibition even proposed that the
basic design principles of passive solar heating would “soon
emerge as the dominant post-war plan type.”56

In the context of these architectural developments and the
postwar concern over resources, the Dover Sun House articulated
a new resonance for architectural-technological choices and out-
lined a new role for the field in contributing to the formation of
the world to come. The house’s insertion into the resource dis-
cussion was both as a creative, if ultimately ineffective, response
to the technological demands of resource pressures and as a 
catalyst to open up these debates to more fully consider the via-
bility of other alternatives. In the fall of 1949, for example, Telkes
participated in the United Nations Scientific Conference on the
Conservation and Utilization of Resources (UNSCCUR), one of
the first gatherings of scientists, policy makers, and technologists
to discuss global environmental conditions. Telkes’s paper “Space
Heating with Solar Energy” summarized a number of contempo-
raneous solar house experiments and then described the “exper-
imental house” in Dover.57 The New York Times reported that,
after seeing Telkes’s presentation, U.S. Interior Secretary Julius
Krug “placed solar energy high on the list of possibilities that
might have a tremendous bearing on the resources of the coun-
try,” and talk emerged of Telkes and Ayres leading a full-scale
study of solar energy as an early project of the then-in-formation
National Science Foundation.58

The house was also featured in a 1951 Truman administration
report called Resources for Freedom. By this time petroleum
exploration in the Middle East and Venezuela, and the adjust-
ment of the relevant tariff structure, had led to imported oil flowing
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freely into the United States.59 The start of the Korean War, how-
ever, again focused attention on the fragility of the global resource
system. The commission organized to produce Resources for
Freedom sought to outline means to integrate resource policy,
economic policy, and foreign policy. The commission analyzed
“the combined material requirements and supplies of the entire
free non-Communist world,” as well as the government policies
and corporate practices affecting them. The resultant document
proposes adjustments to international trade agreements and 
targeted government subsidies that would provide for the “com-
mon welfare, common growth, and common security of these
countries.”60 The intense militarization of the U.S. presence abroad
occasioned by the Korean War—and perpetuated more generally
by concerns over apparent Communist aggression—was thus
reflected in concerns over how this expanded territory could be
managed in terms of, as the report states, “the interdependence
of moral and material values.”61

While the larger report assesses an array of materials, the focus
of the widely distributed summary is energy. Research into “alter-
native energy,” as it was already termed, was seen as especially
significant: by funding solar energy projects for sun-rich devel-
oping economies in the global south, the summary proposes, the
oil and other resources held in those countries could be imported
into the United States, simultaneously increasing the standard 
of living there and in countries at risk of falling under Soviet
influence.62 Because of this strategic approach, the Resources for
Freedom summary claims “the direct utilization of solar energy . . .
was the most important contribution technology can make to the
solution of the materials problem.”63

Rather quickly, then, a number of historical contingencies
transformed the trajectory of phase-change solar heating from a
strained technological experiment to an opportunity for rethink-
ing the geopolitical dimension of energy systems. Telkes, increas-
ingly isolated at MIT, developed a number of funding proposals
that clarified these new possibilities.64 One of the first was a 1951
proposal for a “Solar Energy Research Institute” at Arthur D. Little,
Inc., an early pioneer in contracted services and operations research
models as they migrated from government to private industry
after the war.65 The proposal was to develop a coordinating
organization through which technologists could “collaborate
with industry” for developing “solar energy utilizing devices,
engines, or processes.”66 The project was seen as participating in
the “technological leadership of the United States” as it was
being “extended to underdeveloped countries. . . . Most of these
countries,” Telkes writes, “do not have fuel and power for indus-
trial development.” She proposes that “as a first step, solar distil-
lation could supply fresh water from sea water or from saline
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wells, thereby increasing the possibilities of agricultural devel-
opment. As a second step, solar heating and power production
may inaugurate their industrial development” and leave the way
open for additional investment. Finally, Telkes concludes, “These
underdeveloped countries cannot be expected to do anything in
the development of solar energy. Research and development in
this field must come from [the] technological leadership of the
United States.”67

With the “Solar Energy Research Institute” proposal, Telkes
was participating in the broader integration of resource concerns
into programs of “technical assistance.” Such programs empha-
sized the “interrelatedness of social, cultural, political, and tech-
nical-economic change.” The “invention of technical assistance”
was part of the postwar reconfiguration of global cooperation 
initiated in the first UN General Assembly, which clarified the
UN’s “non-political functions.”68 At the same time, the United
States provided the operational leadership and funding for these
programs, especially after Truman’s “Point Four” proposal in
early 1949 and the subsequent “Act for International Development”
of 1950.69

Here, as with many other issues, however, the situation changed
after the 1952 election of Dwight Eisenhower—and in subtle but
significant ways. Eisenhower claimed a laissez-faire approach to
technological innovation and a general reduction of government
spending. However, he saw in technical assistance projects 
a cost-effective mechanism to influence both political trans -
formation and economic growth. This led to a shift of funding 
from direct foreign aid programs to technical assistance opera-
tions, many of which were led by the U.S. Foreign Operations
Administration formed by Eisenhower in 1953.70 Eisenhower’s
policies also led to a dramatic increase in collaboration with the
UN, the Ford Foundation, the Rockefeller Foundation, and other
entities, often at the agency level, as a way to reap the benefits of
assistance regimes without shouldering the responsibility.71

One of the best-known examples of the Eisenhower adminis-
tration’s investment in technical assistance was the “Atoms for
Peace” program of 1953. Responding to the Soviet Union’s attain-
ment of hydrogen bomb technology, the program proposed a
“world-wide investigation into the most effective peacetime uses
of fissionable material” and sought to develop means to export
nuclear technology and materials to developing economies.72

Though the program was effective on rhetorical terms in the ensu-
ing diplomatic dynamics of the arms race, it quickly became clear
that the technical challenges to sharing and securing nuclear tech-
nology were prohibitive.73

In light of the failure of the Atoms for Peace proposal, the flex-
ibility and user-friendly potential of solar technology and its
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seeming appropriateness to the low-tech needs of the “underde-
veloped,” sun-rich regions of the global south made it appear
even more useful to the administration’s economic and political
goals. A confidential memorandum circulated by the Office of
Defense Mobilization in late 1954 proposes that, in order to 
“further the exploration of new and imaginative ideas which 
provide opportunity for cooperative international effort and the
lessening of suspicion and tensions among nations . . . it is felt
that consideration should be given to a World Solar Energy
Project.”74 The memo cites the discussion of solar energy at
UNSCCUR and in Resources for Freedom, as well as numerous
other experiments in solar energy applications. The phase-
change process in particular, the report asserts, was proof that
“there is sufficient technical challenge in this area to provide a
firm foundation for an international project which could sym-
bolize the will of all nations to join hands in a program for their
common betterment.”75

While the “World Solar Energy Project” was not developed as
policy, it was nonetheless largely instantiated through small-
scale and disparate applications of phase-change materials and
other solar technologies developed in the realm of government-
and foundation-supported technical assistance ventures in sup-
port of the Eisenhower administration’s economic and foreign
policy goals. The proliferation of solar-based systems and objects
developed for these programs, and the array of corporate, 
government, and nonprofit foundation support that engendered
them, was remarkably dynamic. Here again, Telkes was a leading
figure. In a proposal to the College of Engineering at New York
University in 1953, she listed the areas of solar research in which
she had generated interest, including: solar ovens; solar desali-
nation units; solar pumps to carry water uphill; storage and trans-
portation of heat-sensitive goods—including blood and other
medical supplies—in regions without reliable refrigeration; agri-
cultural frost protection; and the strategic solar heating of oil
pipelines to help oil flow more quickly to its destination.76 Based
on this proposal, Telkes was offered a job at NYU in 1953 and
formed the Solar Energy Research Laboratory there in 1955.77

One of the most successful of the solar technological objects pro-
posed by Telkes was the phase-change solar oven she developed
“for use in fuel-short regions such as India and the Near-East.”78

Exhibition of solar ovens, 
furnaces, and water distillation
devices organized by Telkes’s
Solar Energy Research
Laboratory at New York
University and the Association
for Applied Solar Energy, 
outside Ahmedabad, India, 1956.
Courtesy the Department of
Archives and Special Collections,
Arizona State University
Libraries.
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The phase-change oven was first tested at a Navajo Indian reser-
vation in Arizona in 1954, and versions were later exhibited in
India as part of a Department of Commerce tour of delegates in
1955, at the 1956 Brussels World Fair, and at the 1957
International Trade Fair in Salonika, Greece. In 1955, a demon-
stration of the solar oven was made to the Foreign Operations
Administration and the State Department.79 In 1957, under
Telkes’s direction, the Food and Agriculture Organization of the
UN organized a “one-day course” on assembling solar ovens. UN
field tests were made in Thailand, Egypt, India, Trinidad, and
Rome, and solar ovens were widely distributed and used in the
late 1950s.80

Telkes’s lab also experimented with desalination techniques.
The lab developed a number of models: a “flat tilted solar still . . .
that can be operated at the sea shore with sea water” as well as a
“roof-type” still that trapped heat in a glass- or plastic-enclosed
volume and collected distilled water along the sides. A later 
“ten-stage multiple-effect atmospheric still” produced six times
more water than previous experiments, and also produced table
salt—a useful sun machine indeed.81 Later improvements
included “automatic controls . . . that regulate the flow of water,
admitting more salt water when the sun shines brightly.”82 Telkes’s
projects had numerous applications relevant to economic develop-
ment and health improvement, including solar desalination plants
to increase agricultural productivity and “municipal solar distilling
plants” which Telkes proposed to the governments of Curaçao and
Cuba. From 1955 onward, Telkes was a frequent “water quality”

consultant to UN technical missions.83 

A number of phase-change solar
houses were also built, including one at
the U.S. Department of Commerce’s trade
fair outside Casablanca, Morocco, in 1957
that experimented with solar cooling.84

Solar technologies became central to the
new forms of economic development
knowledge and to the dissemination of
American influence—both as a means to
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improve economic opportunities and to help secure the political
affiliation of unallied nations as the Cold War was heating up.

| | | | |

Much as the story of the Dover Sun House is about how it was
made to work, “propped up” by excessive investment, continu-
ous maintenance, and aggressive advocacy, the technological pos-
sibilities of the phase-change system and of solar energy more
generally were constructed and reconfigured in multiple attempts
to maintain relevance amid a brief historical moment of a recep-
tive political discourse.85 The vicissitudes of the phase-change
process provide evidence that all technologies develop in rela-
tionship to contingent cultural and political factors—a point 
further clarified by the fact that phase-change materials are today
a familiar element in the sustainable architect’s toolkit.86 This
same principle of historical contingency needs to be applied to
the foil of midcentury solar experiments: the multifaceted project
to construct a global infrastructure of oil. Oil was also propped
up by numerous geopolitical forces in the period. Securing a reli-
able flow of oil into the United States involved a combination of
military threats, careful diplomacy, and new techniques in polit-
ical forms of clandestine infiltration—this last illustrated most
dramatically in the 1953 CIA-organized coup in petroleum-rich
Iran.87 Making oil available and affordable in the U.S. and Europe
was itself a massive technological and political project, with a
range of social and environmental effects. A minor consequence
of this effort was the reduced utility of solar energy in the global
coordination of energy systems.

Thus, while the Dover house had some significant effects, it
did not, in the end, help to resolve midcentury concerns over
energy sources. The historic significance of phase-change tech-

Opposite, left: Maria Telkes and
Stella Andrassy. Hot-box type
clay-coated phase-change solar
oven, 1955. Shown during 
a demonstration of the oven to
the U.S. Foreign Operations
Administration. Courtesy the
Department of Archives and
Special Collections, Arizona
State University Libraries.

Opposite, right: George O. Löf.
Folding-umbrella-type portable
solar kitchen. Shown in use in
Pakistan, 1956.

Below: John I. Yellott and the
Association for Applied Solar
Energy. Casablanca Solar House,
U.S. Department of Commerce
International Trade Fair,
Casablanca, Morocco, 1957. 
The demonstration house used a
Telkes-designed phase-change
chemical system for both heating
and cooling. Courtesy the
Department of Archives and
Special Collections, Arizona
State University Libraries.
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nology in the 1950s was less in finding effective means to disen-
tangle the complications of anticipated resource scarcity and
more in defining new realms for technological and creative inter-
vention. Architectural and applied science research in environ-
mental technology was less potent for its explicit effects on the
energy system and more for its capacity to facilitate new forms 
of social collectivity.88 The instrumentalism of Banham’s “fact of
utility” is thereby recast to provide a window onto how techno-
logical interventions, rather than resolving social and environ-
mental complications, served to restructure collective visions of
the future.

The reception of the Dover house was in this sense embedded
in a much more broadly conceived “World Solar Energy Project”:
an attempt to offer an alternative form of political organization
focused on the relationship between technology, culture, and

environmental change. New funding streams, organiza-
tional infrastructures, and social movements arose in
response to the apparent promise of midcentury solar energy
experimentation. Beyond direct means of technical assis-
tance, philanthropic and corporate research funds increas-
ingly focused on facilitating a cultural and scientific discourse
concerned with how to measure and manage environmen-
tal change. Conferences on alternative energy research were
held to direct technological knowledge and professional
practice. A conference at the University of Wisconsin in 1954,
for example, sponsored by the National Science Foundation,
introduced significant new technologies such as early p-n
junction photovoltaic cells and the French engineer Felix
Trombe’s solar furnace.89 The Stanford Research Institute
and a think tank called Resources for the Future, which had
developed in response to the initial enthusiasm about the

Top: Cover of the 1978 reprint of
Solar 2: The U.N. Conference 
on New Sources of Energy, which
detailed the solar energy discus-
sions at the United Nations
Conference on New Sources of
Energy: Solar Energy, Wind
Power, and Geothermal Energy
held in Rome in 1961.

Bottom: View of the Sun at 
Work exposition at the World
Symposium on Applied Solar
Energy, Phoenix, AZ, 1955.
Courtesy the Department of
Archives and Special Collections,
Arizona State University Libraries.
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Resources for Freedom report, organized the World Symposium
on Applied Solar Energy in Phoenix in 1955. Here, the existing
solar research was summarized and, in the form of an exposition
called “The Sun at Work,” presented to industry as opportunities
for investment.90 Telkes, working with the Association for Applied
Solar Energy that grew out of this conference, organized related
symposia at NYU in 1956 and 1959.

Unesco and the Ford Foundation sponsored “Wind and Solar
Energy,” a conference in New Delhi in 1954 that focused in part
on refining a global analytic method for assessing the energy
needs of a given community in order to determine “the possibil-
ity of satisfying [those needs] by an integration of solar, wind, and
waste vegetable matter as sources.”91 This conference was the
organizational precedent to the 1961 “United Nations Conference
on New Sources of Energy: Solar Energy, Wind Power, and
Geothermal Energy” in Rome. The Rome conference was, in turn,
a touchstone for solar architects of the 1970s—the sessions on
solar energy were reprinted in 1978, with an introduction by 
prolific technologist Steve Baer.92 The Rome conference, in con-
junction with the 1968 Unesco conference on the “Use and
Conservation of the Biosphere” held in Paris, was also an impor-
tant precedent to the discussion of energy at the 1972 “Conference
on the Human Environment” in Stockholm, which saw the forma-
tion of the UN Environment Program and is often regarded as the
beginning of the global managerial regime we now call “sustain-
able development.”93 This historical trace could be continued to
encompass the Brandt Commission report of 1980, the Brundtland
Commission report of 1987, and on to the Rio Earth Summit in
1992 and the yearly meetings of the International Panel on Climate
Change since 1998 that have continued as a prominent vehicle for
environmental advocacy up to the present.94

| | | | |

The interest in solar energy at midcentury thus holds the poten-
tial to rescript much of the history of postwar environmentalism,
both relative to architecture and more generally. The point here
is not simply to applaud the formation of these organizational
bodies and their attendant regulatory regimes—in many cases
this global managerial approach can be seen to have shut down,
rather than opened up, possibilities for rethinking future
prospects.95 As Nancy suggests, the worlds formed through
ecotechnological experimentation are not inevitably productive
of the new forms of life that appear to be increasingly necessary
in the face of environmental degradation, in the face of the polit-
ical incapacity to encounter climate change, and in the face of the
professional challenges to architecture and other fields as they
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struggle to resist the momentum behind simply proceeding with
“business as usual.”96 Banham’s exhortation for architects to shed
their “professional garments” in order to “run with technology”
has long since been exceeded, as the imperative for technological
innovation has redefined, if not in fact overwhelmed, the design
professions. Much as the bureaucratic realm of global environ-
mental management has come to be indistinguishable from the
neoliberal discourse on endless economic growth, so has the
promise of architectural ecotechnologies often collapsed into,
rather than an opportunity for new forms of life, a form of “tech-
nical legitimization for promoting conventional solutions.”97

At stake instead is a new framework for the historical and crit-
ical evaluation of the complex relationship between architecture,
technology, and environmentalism. The World Solar Energy
Project renders visible the tight interconnection between archi-
tectural experimentation and the gathering of new publics—
collective social bodies newly concerned with the multifaceted
and multifarious dynamics of the global ecological system.
Experimentation in solar house heating, among other examples
in the architectural history of the postwar period, demonstrates
the potential of the design disciplines to contribute to the consti-
tution of new social conditions, to new relationships toward
materials and energy resources, to debates over political and eco-
nomic organization, and toward new forms of life, for better or
worse. Expanding our historical understanding of architecture 
to include these ecotechnological experiments also points to the
need to persistently interrogate the presumed promise of techno-
logical innovation, and to hold such claims for innovation to a
different set of criteria, that of facilitating that cultural potential
for environmental change.
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