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Introduction

Architects use multiple kinds of models to inform multiple stages their work. These include physical
models, full-size and scaled, analytical, mathematical models, and computational models, commonly
called simulation (Weisberg 2013).

In our terminology, white box models are deterministic, physics-based models solved with numerical
techniques. They are widely used in the design and analysis of buildings. Black box models are stochastic
models analyzed with statistical and machine-learning techniques and are most commonly used for the
analysis of limited data streams for example from thermostats or meters. Gray box models combine a
deterministic model with factors to account for the stochasticity of data and are solved with a variety of
techniques.

This paper will briefly review the use of white and black models, which are explored in more detail in the
sections by Ravi Srinivasan, Pengyuan Shen, and Nancy Ma. The body of the paper will review gray-box
methods as they have been applied to buildings

White Box Models

White box models are deterministic, physics-based models solved with numerical techniques. They are
widely used in the design and analysis of buildings. These are commonly divided into categories by level
of complexity: single zone, multiple zone, and computational fluid dynamic models (CFD). The building
physics for building energy modelling has been well established since the early 20™ century, so the
limitation has been computational power and efficiency. A variety of techniques were employed in
manual calculations, but with the advent of ready computational power and the increased urgency of the
energy crisis in the 1970s, the heat balance method became the dominant approach. For a more detailed
history of these methods, see (Oh and Haberl 2016) and (Malkawi and Augenbroe 2004).

The dominant whole-building, multi-zone model at present is EnergyPlus, which has been developed and
supported by the Department of Energy (U.S. DOE 2020), who provide the computational engine used by
many different 3 party interfaces. EnergyPlus is used by many different kinds of users for many different
kinds of purposes from architectural and engineering design to code compliance, policy analysis,
research, and measurement and verification. Its strength is its comprehensive nature, allowing the
evaluation of small variations on almost any component or condition. The challenge is its complexity,
which becomes especially evident when it is used to model the performance of an existing building, in
which the process of calibrating the model can be time-consuming and uncertain. Simplified or low-order
white-box models make clearer what causes their behavior and are much easier to calibrate (Shen,
Braham, and Yi2018) (ISO 52016-1 2017).
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Figure 1. Genealogy chart for whole building, white-box simulation programs (Sukoon 2016)
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Black Box Models

Black box models are stochastic models analyzed with statistical and machine-learning techniques and for
building energy analysis are most commonly used for the analysis of limited data streams, for example
from thermostats or utility meters. Machine learning techniques can also be used to optimize or calibrate
white box models.

Gray Box Models

Gray box models combine a deterministic model with factors to account for the stochasticity of data and
are solved with a variety of techniques. As Kissock et al explained, “In the building energy community,
models derived from measured energy use are called ‘inverse’ models. The term ‘inverse’ differentiates
them from ‘forward’ models in which building energy use is predicted from engineering principles
(Kissock, Haberl, and Claridge 2003, 2002).” Inverse methods are also called “estimation and system
identification” and are used to identify models that provide a good fit to data and whose parameters also
correlate to some physical aspect of the building (Rabl 1988).

Correlations between outdoor temperature and energy use have been in use since the early twentieth
century, initially used to time the delivery of fuels to homes, and correlation parameter was indication of
the temperature driven heat loss of the building (1906). Inverse or gray-box methods were intensely
explored in the 1970s, inspired by the energy crisis and the desire to accurately determine energy
consumption and savings. They can be broadly divided into steady-state and dynamic models.

Steady State Models

Steady-state models are simpler and are generally employed with the average daily, monthly, or yearly
data that is more commonly available.

Princeton CES: Twin Rivers Program

Among the earliest studies of gray box modelling emerged from the Center for Environmental Studies at
Princeton University, which had been engaged in 1972 by the newly formed Energy Research and
Development Administration “to document, to model, and to learn how to modify the amount of energy
used in homes (Socolow 1976).” Their focus was on winter heating, which was the largest residential use
of energy. The monitored a group of 48 identical rowhouses in Twin Rivers, New Jersey and in the
process developed or refined many of the auditing techniques still used in energy analysis today. Simple
modelling was readily adopted, because as Socolow explained, “Winter gas consumption is strongly
predicted by a linear relation involving one single independent variable: average outside temperature.”
They began their analysis with the simplest model linearly relating gas consumption to the outside
temperature and a reference temperature, which is now commonly called the balance point and represents
the temperature at which the furnace needs to turn on.

Gas Consumption = B(Reference Temp.— Outside Temp.)

They obtained good fit of gas consumption with temperature over periods of months, but for individual
houses they discovered many variations attributable to differences in orientation (sun and wind), to
differences in construction affecting heat loss and air infiltration, and differences in occupancy and
operation. The team devoted considerable effort to identifying the additional independent variables that
could be measured and could explain the variations. They focused on solar gains, internal electric heat
gains, and wind velocity applied in a sequence of increasingly complex models and more detailed data
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gathering.

Certainly, the models in Chapter IV are an improvement on degree-day models with fixed
reference temperature. But it must be possible to advance the state of the art further, while
sacrificing only a little of the simplicity and economy of the current models. It remains our
conviction that the way to further progress is not by the back door of elaborate, costly, and
highly deterministic computer models drawn from the world of office buildings with fixed
usage patterns, that track the weather hour by hour through the year. Rather, it may well lie in
the direction of identifying those few parameters that capture the gross features of the energy
balance of a house (its "signature") and then finding simple field approaches to measure their
numerical values (Socolow 1976).

The use of meaningful signatures remains a popular approach and is widely used in government programs
and businesses focused on energy reduction. Energy consumption normalized per unit area (kBTU/sf and
kWh/m?) is widely used as benchmarking and improvement metric, while two of what we might call
“challenge” measures—air infiltration rate under pressure and cool down time—provide valuable
indicators without detailed modelling.

PRISM: Variable-Base Degree-Day Models

Through the early 1980s, the Princeton group continued to develop simple methods that could be applied
with commonly available data. They refined the use of a “degree-day” method that used records of daily
energy consumption and average daily temperatures, with which the numbers of degree-days of difference
from a reference temperature could be calculated. They designated the method PRinceton Scorekeeping
Method (PRISM) and it was widely used as a benchmarking tool and to evaluate the effectiveness of
energy conservation measures in heating dominated buildings. It was subsequently applied to commercial
buildings, with some limited success. It is called a variable-base method because it relies on a best-fit
estimate of the reference temperature, T:

Qint

T=—"
Lossiness

In effect, it divides energy use into two categories, heating and everything else, fitting a line to the heating
portion of the usage and assuming that everything else is constant through the year. As Fels observed,
“for climates in which the energy used for cooling rather than heating dominates, and for houses with a
large solar component in their design, more research is needed (Fels 1986).” Moreover, as Kissock et al
argued, the “linear two-parameter regression models fail to capture the non-linear relationship
between heating and cooling energy use and ambient temperature caused by system effects, such as
VAV control, or latent loads (Kissock, Reddy, and Claridge 1998).”

Change Point Models: Inverse Modelling Toolkit (IMT)

Better results were obtained by using models with more parameters, fitting lines to portions of the data
and determining the “change point” between the behaviors iteratively. These models were sufficiently
useful for more complex buildings that ASHRAE commissioned an “Inverse Modelling Toolkit” from
Kissock, Haberl, and Claridge, which was published with software in 2002 (Kissock, Haberl, and
Claridge 2003). The three-, four-, and five-parameter models were able to capture the energy
consumption behavior of buildings with more complex systems with variable or non-linear components.
The method was developed for daily temperature and energy measurements.
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Figure 2. Change Point Models. Top row, 2 parameter heating or cooling, second row, 3 parameter heating and
cooling, third row, 4 parameter, heating and cooling, and bottom row, 5 parameter, heating and cooling (Kissock et
al, 2002)

FirstView

FirstView has similar ambitions to the Inverse Modelling Toolkit (IMT), which is to provide performance
assessment and analysis of buildings using readily available data. Beginning in the early 1990s, Howard
Reichmuth began working with monthly average temperatures and monthly energy use, which is regularly
reported in utility billing, so required no special metering. Unlike the regression techniques in IMT, it
uses a variety of assumptions about characteristic heat loads and gains to build a physics-based model that
is fit to the data. It is effectively an elaboration of the degree-day “bin methods” that correlated monthly
temperature distributions to monthly energy, and also draws on the load breakdowns revealed with hourly
simulation models. Reichmuth began producing “Howdy charts” of discrete energy gains and losses
showing the patterns that were eventually designated as energy signatures (White and Reichmuth 1996).
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Figure 3. Howdy models of monthly energy data (Reichmuth 1996)
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The method is similar to the calibration of low-order white-box models, adjusting a limited set of building
parameters to fit the model to the data. The impressive aspect of the method is that good fits have been
obtained with monthly data for a large set of commercial buildings, mostly office buildings (Robison and
Reichmuth 2001). The use of analog building parameters also facilitates recommendations for the
improvement of energy performance.

Beginning in the 2000s, the method was adopted by the New Building Institute (NBI), who were able to
validate it against a larger pool of building and support its further refinement (Reichmuth and Turner
2010). NBI is actively using the tool and have been promoting it to EPA for use with the EnergyStar tool.

Table 1. Equivalent Analog Building Parameters . - .

Parameter, svmbol Units Notes 8

Internal Gam. Oin W2 Solved -;a g

Extemal Energy, Qext Wite2 Fixed ratio of mtemal gam 3 :

Aggregate Normalized UA, UAn | BTU/deg F-la-f12 | Solved 2.

Heating Efficiency. Eh No umits Assumed to be 0.73 CE

Cooling Efficiency. COP Mo umits Solved 3¢

Service Water Heating. SWH Gal/dav/fi2 Solved :
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Figure 4. FirstView, equivalent analog building parameters and analysis (Reichmuth 2010)

Dynamic Models

Inverse models become dynamic with the additional of some measure of internal heat storage. As Rabl
observed, “there are many situations where dynamic models are preferable or required: warmup and
cooldown; peak loads; rapid monitoring; diagnostics; and optimal control (1988).” Dynamic models can
also incorporate more heat transfer pathways and methods of solution (linear and non-linear), facilitating
the identification of suitable models, but increasing the complexity and computational intensity.

The experiments with different dynamic models have revealed two kinds of issues—building parameters
that vary through time and correlation between variables that are not entirely independent. Principle
among the varying parameters are the air exchange rate and the admittance of solar radiation. A parameter
that can be problematic in drier climates is the difference between the temperatures of air, sky, and
ground, which can have quite different spatial and temporal patterns.

This review will focus on the different models that have been tested, with some discussion of the methods
of solution. There is also a difference in the literature between gray-box models that are tested against the
results from complex white box models, on the argument that they have no noise, so are better suited to
evaluate the models themself. That is in contrast to models tested against measured data from real
buildings, which have to account for the noisiness of the real world, including environmental and building
parameter variation, as well as the noise inherent in measurement and data collection.

Thermal Time Constant

Principle among the dynamic properties of a building is the thermal time constant, which is a measure of
the rate at which a building or thermal system warms up or cools down. Even with all the focus on
insulation values in construction, early researchers like Andreas Bugge considered it one of the
fundamental characteristics of a building (Bugge 1924). He recognized that it interacted in ways that
complemented insulation values and would be of importance for understanding the effect of variable heat
sources, such as the sun. That instinct was confirmed by the solar researchers of the 1940s and 1970s,
who devoted a great deal of time to the incorporation of thermal mass in interior construction and learning
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to determine its effects (Barber 2016, Balcomb 1982).
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Figure 5. Cool down tests for Trondheim test houses (Bugge 1924)

In real construction, there are multiple time constants within a building and thermal properties are
distributed, but for lumped-parameter, RC models there is a thermal time constant that typically forms
one of the characteristic parameters of the model and its solutions.

The simplest example comes from Newtons law of cooling, which applies to the cooling of a thermal
mass by some linear from of heat exchange that is proportional to the temperature difference. That
linearity is generally true for forced convection, but can vary with buoyancy driven convection and only
applies for small temperature differences in radiant exchange. The basic heat balance expression is:

dT
pC,V—— = hA(T(t) — T,)

dt
Where:
p = Density, kg/m’
(O = Specific Heat, J/kg °C
\Y% = Volume, m’
pC,V = Thermal mass, J/°C
h = Convection heat transfer coefficient (W/m2-°C)
A = Heat transfer surface area (m?)
T(t) = Temperature of the solid (°C)
Ta = Temperature of the air surrounding the surface (°C)

The solution to the differential equation has the following solution expressed as a function of the time
constant:
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t
T(t) =T, + (Tg—Ty)e =

Where the time constant, T, is defined as the ratio between the thermal mass and the temperature
dependent rate of heat loss, which has the units of time. The time constant is the time it takes the mass to
cool off by 1/e in temperature.

pC,V
hA;

T =

Taking the simple example of a masonry brick with an initial temperature of 50 C in a environment with a
temperature of 20 C, the charts in Figure 6 show the cool down curves for time constants of 3 and 9 hours
(very different shapes and sizes of brick!).
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Figure 6. Cool down curves for bricks with different thermal time constants, 3 hr on the left and 9 hour on the right

Equivalent Thermal Parameters

The first of the dynamic gray-box or inverse modelling techniques developed in the Twin Rivers study
was reported in Robert Sonderegger’s dissertation (1977). He tested a variety of simple models, whose
distinguishing feather was the inclusion of thermal storage elements. In the model that was most
successful with the Twin Rivers townhouses, he also included a constant temperature “clamp” to account
for the effect of the basement. Figure 2. The model is expressed in terms of measurable temperatures and
energy inputs, and solved for interior temperature over time.

Using algebraic manipulation, he was able to reduce the heat balance to a single difference equation that
could be used for linear regression.

HeVO + A5 HE

T H r A E«P+L
(H$+H+HS} + E—,r[‘l.-’ﬂ-h’] + "CT{III':—U_:I + C_*S + —

C*

=y

Where V = temperature, H = lossiness, A = window area, S = solar flux, C = thermal mass, E+P+L are
energy inputs

He obtained good fit with the model, and by precisely determining the heat gains (E+P+L) using electric
heaters, he was able to solve for the “equivalent thermal parameters” of the building.
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Figure 7. Equivalent RC model of Twin Rivers Townhouse, Sonderegger, 1977

The model and its solution also provided a measure for the thermal time constant of the whole system.

HS H+HC)

For the Twin River Townhouse they were measuring, the time constant was 6.8 hours. The time constant
also emphasizes the point that the thermal behavior of buildings is not the function of a single property,
but of their relation in the building as a thermal system. As Bugge’s chart illustrated, you can achieve the
same cool down time with massive construction lightly insulation and highly insulated, but lightweight
construction.

T—C(

Enerplex

After the Twin Rivers program, the CES group was involved in the design, construction, and monitoring
of two commercial buildings called Energyplex. A number of inverse techniques were used on the data
collected from these buildings, from multiple solution techniques for differential heat-balance equations,
to the use of an auto-regressive moving average (ARMA) method that yielded time constants and
admittances, but without estimation of physical parameters (Subbarao 1985). Two useful features
revealed by dynamic methods are the characteristic time constant of the building and the effective thermal
mass (Rabl 1988, Norford et al. 1986).
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Figure 8. Summary of dynamic methods in the later 1980s (Rabl)

Continuous Time Stochastic Models (CTSM)

Beginning in the late 1980s, the mathematician Heinrich Madsen began working with a variety of
colleagues to apply more sophisticated statistical techniques to the heat dynamics of buildings (Madsen
1985). The focus was on accounting for the different forms of noise in time series data, so their projects
were based on measured data from a variety of test buildings. In their first study (1983-1995), shown in
Figure 7, they achieve very good fit of a 2R2C model. However, similar to the electric heaters introduced
in Twin Rivers, they used an electric heater configured to produce heat in a white-noise pattern, which
was explicitly independent of environmental factors (Madsen 1995).
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Figure 9. A 2R2C model of building (Madsen 1995)
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In a subsequent project, they tested a hierarchy of models of increasing complexity on data from their test
building, using a likelihood ratio test to identify the best fit. The heat input was again not driven by a
thermostat, but used a “pseudo-random binary sequence (PRBS)” to excite different frequencies of
thermal response in the building and to make the variable independent of other environmental factors.
They tested a total of 17 models that increased in complexity from a 1R1C model to 6R5C model that
even includes the capacitance of the sensor and a resistance for its connection to the indoor air
temperature (Bacher and Madsen 2011). The one that best fit the data was a 4R4C model that included a
mass and resistance for the sensor and the heater, as well as mass for the air and for the building envelope.
See Figure 8.
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Figure 10. The simplest (top), most complex (bottom), and best fit (middle) of the RC models used in the CTSM study
(Bacher 2011)

Of course, there are multiple time constants in more complex models. As Bacher and Madsen described in
the matrix formulation of their models “the estimates of the time constants, ; are calculated by the

eigenvalues, A;0f the system matrix A, i.e., T; =1 — % (Bacher and Madsen 2011).” These all have the
4

same form of a ratio of thermal transmittance and thermal capacitance, and there is a time constant for

each capacitor. The cool down time constant for the house would generally be that for the building mass,

but this gets complicated in the models that separate the interior mass from the mass that is part of the
exterior envelope. See Figure 11.
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Table 3

The estimated parameters. The heat capacities, G, are in [kWh/*C]. The thermal
resistances, Ry, are in [*C/kW]. The areas, A, are in [m? ). The time constants, t,, are
in (h). Note that the physical interpretation for many of the parameters is different

for each model.

Model

Ti TiTh TiTeTh TiTeThTs TiTeThTsWithAe
G 2.07 1.36 1.07 0.143 0.0928
Ce - - 292 3.24 3.32
Ch - 0.309 0.00139 0.321 0.889
G - - - 0.619 0.0549
Ria 5.29 5.31 - - -
Rie - - 0.863 0.909 0.897
R - - 4.54 447 4.38
Rin - 0.639 934 0.383 0.146
Ri: - - - 0115 1.89
Aw 7.89 6.22 5.64 6.03 5.75
Ae - - - - 3.87
Tl 109 016 0.129 0.0102 0.0102
2 - 8.9 0.668 0.105 0,105
T3 - - 18.4 0.786 0.788
T4 - - - 19.6 193

Figure 11. Thermal parameters, including time constant, for the 17 models tested by Bacher et al

Control Model

In a novel conference paper, McKinley and Alleyne combined an RC model of a building with a heat and
moisture balance model of a simple HVAC system (McKinley and Alleyne 2008). They used data from a
white-box, EnergyPlus model of a small commercial building, so there was no noise present in the data.
They used a 4R2C thermal model and a standard optimization technique to achieve good fit. One
interesting observation was about the choice of error function and the confounding of parameters. In their
case they started by using the rms error of interior air, which confounded the heat gain through the
envelope and through the windows, but when the switched to using the zone humidity ratio, they achieved

much better results. It seems a very useful insight!
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Genetic Algorithm

Wang and Shu developed a hybrid method for parameter estimate, using physical specifications to
calculate the parameters of the 3R2C models of the envelope, but used inverse modelling of a 2R2C
model for the internal mass, employing a genetic algorithm to optimize the fit to the data. They used the
measured heat input to the building as the objective function, and achieve reasonable (though not perfect)
results with the model.
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Bath Group

Ramallo-Gonzalez et al successfully tested lumped parameter models for heat transfer through building
envelopes, getting good results with 3R2C models (Ramallo-Gonzalez, Eames, and Coley 2013). In a
subsequent study they tested a variety of whole building models against data for a diverse selection of
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residential buildings, settling on a simple, 2R1C model, which gave the best fit across the population.
They used data for 1,000 simulations of 16 house types and 6 different types of actual buildings. Their
goal was “to see if the restricted data gathered from advanced smart metres or similar devices might be
used to form the basis of a dynamic thermal model of a building (Ramallo-Gonzalez et al. 2018).”

One peculiarity of their study was that after testing for fit to interior temperature data, their focus was on
estimating heat transfer coefficients (HTC)of the buildings, which they compared to those calculated from
the EnergyPlus simulations. The also used the fit models to test their sensitivity to missing heat gain data,

They did achieve good results with the real buildings, that had some critical sensors added to increase
precision, specifically: “Internal temperatures (in three locations per house), external temperature,
electricity use, gas use (aggregated with DHW) and CO, concentration were obtained at a resolution of
5 minutes. Given the CO; concentration, it was possible to produce an estimation of the air renewal.”
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Figure 13. Performance of Bath models of increasing complexity to reproduce time series of interior temperature.
1R model not included (Ramallo-Gonzalez)
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The following diagrams show the various lump-parameter build-
ing models that were tested.
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Figure A6. 1R model. This model has a single resistor that rep-
resents the thermal resistance of the building envelope. No inertial
effects are considered with this model.
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Figure A7. |R1C model. First-order model where the thermal
resistance of the envelope is represented by R and all the thermal
mass of the building is represented by the capacitor C.

D, N n;
Tuul['} L
— 1 1

Figure A8, IR1CTM model. This is the same as the 1R1C
model, but the thermal inertia of the building is separated between
the thermal inertia of the walls with the element C, and the ther-
mal inertia of the thermal mass —which has its own time constant.
This is represented with the resistor Ry and Crpg.

Toudt)

Figure A9. 2RI1C model. This model is also first order like the
IR1C. However, the second resistor R7 allows it to have differ-
ent temperatures between the construction and the intemnal air,
i.e. it has an extra degree of freedom. This allow to control the

temperature swing due to gains gia(¢).
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Figure A10. 2RICTM model. This model is equivalent to the
2R1C model but it has the thermal mass included.
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Figure All. 2R2C model. This is a second-order model with
two time constants. R ) provides the long-time constant of the
building and relates with the thermal inertia of the constructions.
The second time constant given by R7 and C7 is smaller and is
used to represent quick response parts of the building such as the
air within the spaces.
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Figure Al12. 2R2CTM model. As in previous cases, this is the
2R2C model with the thermal mass being represented.

Figure A13. 3R2C model. This model adds the resistor R3 to
account for heat flows that bypass the thermal envelope of the
building. This is considered to be the heat flow going through
windows and infiltration and ventilation.

Figure 14. Eight RC models evaluated in Bath project. (Ramallo-Gonzalez)
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Summary

Relatively simple RC, gray-box models have been successfully applied to data form a variety of buildings
for a variety of purposes. Their formulation and solution are driven by the building type, the particular
data available, and the research question. The successful models range from 2R1C to 4R3C.

There are many approaches used to the optimization, but for real data from real buildings the two most
immediately promising methods seem to be CTSM and the genetic algorithm.
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History of Building Simulation

The main development of building simulation tools starts in the 1970s and was further developed in the
’80s and ’90s. During the '90s, most functions were completed and validated. Since the late *90s and the
beginning of the 2000s, tools were developed to share code, files, and integrate them into the design tools.
In the early 10s, several cloud-based tools were introduced to the market, and more tools were integrated
into CAD tools.

Reference

Augenbroe, Godfried (2011). The role of simulation in performance based design. In: J. Hensen and R.
Lamberts (eds), Building Performance Simulation for Design and Operation. Spon Press.

Ali Malkawi and Godfried Augenbroe (editors), Advanced Building Simulation. SPON Press, Taylor and
Francis group, 2004. ISBN 0-415-32122-0

J.L.M. Hensen, Towards more effective use of building performance simulation in design, Van Leeuwen,
J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in
Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-
6814-155-4, p. 291-306

Currently, the issue of using building simulation tools is not that there are too few tools, but instead too
many. This brings the problem of selecting the right tools to use. Currently, available tools can be found
in the Building Energy Software Tools webpage (https://www.buildingenergysoftwaretools.com/).
Crawley (2006) discusses the capabilities of different building energy simulation tools and its shows
limits and functions used in different tools.
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Crawley, Drury B., Hand, Jon W., Kummert, Michael, and Griffith, Brent T. Contrasting the capabilities
of building energy performance simulation programs. United States: N. p., 2008. Web.
doi:10.1016/j.buildenv.2006.10.027.

Yi, Yun Kyu, “Building Performance and Computational Simulation,” in The Design and Construction of
High Performance Homes Building Envelopes, Renewable Energy and Integrated Practice, ed.
Franca Trubiano, (Abingdon, UK: Routledge, 2012): pp. 163-177

White Box Models for Whole Building Energy Use

White box models for whole-building energy use can be sub-divided into “milky white box” and “glass
box.” The difference between the two can be identified by its accessibility to its core function. “Milky
white boxes” are typically commercial tools that encapsulate its core engine. Because of this, it has
difficulty accessing functions, where “glass box,” is an open-source where users can get access to the core
engine which allows the user to test different configurations or new models. The benefit of the milky
white box is that it is stable, and the outputs are more trustable. However, its benefits work against the
users whose interests are in testing different models or algorithms to replace existing core functions.

Since White box models are based on physics, their model was developed based on energy flow. This
means the 1st step of the calculation process is using the heat balance model to find the cooling and
heating load. This load is passed to the system and primary energy side to calculate whole-building
energy use. This process was developed as modules in the tool that the system manager communicates
between modules to calculate energy use.
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Figure 1. EnergyPlus Internal elements (Getting Started with EnergyPlus, 2021)

The building energy tools are dynamic and deterministic. This means that boundary conditions were set
up at the initial stage and modules communicate each other accordingly based on time steps. The white
model which is a physics-based model is sophisticated and able to understand the performance of building
in-depth. However, its strongest benefit also works against its benefit. It is common to find simulation
result shows a significant discrepancy with actual performance (Sokolowski and Catherine, 2011). DOE
identified this discrepancy into two categories (DOE 2019). Variability and Uncertainty were identified as
sources of differences between simulated and actual performance.

Currently, several research projects are undergoing to improve the discrepancy between actual results and
simulation results. The most significant effect on discrepancy is occupant behavior and a significant
amount of literature can be found in recent years. Gaetani, Hoes, and Hansen (2016) summarized all
papers related to occupant behavior modeling in Building energy modeling.

For this reason, other modeling methods like a grey box or black box can be utilized to overcome the
limitations of the white-box model. However, grey box or black box were depending on the data set to
overcome the limitation of white-box modeling. If the data set is missing, it is difficult to develop a black
or grey box model and has to depend on the white-box model. This especially true when the building is in
the design stage and no data is available. To overcome the limitation of missing data and discrepancy of
white-box model result with actual usages, Judkoff (1988) suggested three methods for validation of the
white box model (NREL, 2006) (Figure 2).

Since other sections focused on the operation and management stage of building energy usage, this
section focuses on the design stage and how the white-box model can be used. Among the three
techniques in figure 2, in the design stage "comparative" method is most suitable to use. Since in the
design stage, it is more important to understand the relative comparison of different design strategies than
absolute truth results. The following chapter discusses some of the examples of different white-box
models that are used to overcome the limitation.
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Table 1. Validation Techniques

Technique Advantages Disadvantages
Empirical * Approximate truth standard within » Experimental uncertainties:
Test of model and solution experimental accuracy - Instrument calibration, spatial/
process * Any level of complexity temporal discretization
- Imperfect knowledge/
specification of
experimental object (building)
being simulated
» High quality detailed
measurements are expensive and
time consuming
* Only a limited number of test
conditions are practical
Analytical + No input uncertainty * No test of model validity
Test of solution process * Exact mathematical truth standard * Limited to highly constrained
for the given model cases for which analytical
* Inexpensive solutions can be derived
Comparative * No input uncertainty * No absolute truth standard (only
Relative test of model and * Any level of complexity statistically based acceptance
solution process * Many diagnostic comparisons possible | ranges are possible)
« Inexpensive and quick

Figure 2. Validation Techniques
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Integration with other models

Here few examples of integration with other models are discussed, first section discusses how the
building energy model can be integrated with the CFD (computational fluid dynamics) modeling to
improve boundary conditions for energy simulation tools. Second is the integration between the building
energy model with the daylight model to improve the accuracy of the indoor daylight level. Lastly,
discuss integrating the building energy model with two different models to speed up computation time
that limits integrating two white-box models.

Building energy model with CFD

One of the major limits of building energy modeling is calculating airflow in buildings. Specifically,
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convection thermal transfer is a difficult part of energy modeling. For that reason, several papers discuss
indoor coupling between energy simulations and CFD. Here are some of the major publications in this
area.
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Coupling with CFD and the building energy model extend to outdoor conditions, specifically site-specific
conditions are one of the major discrepancies between actual vs. simulation. The following papers discuss
coupling CFD and building simulation for outdoor conditions.
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Building energy model with Daylight model

Electricity takes a significant portion of building energy usage and it is crucial to understand how daylight
performs indoor space to estimate the reduction of energy usage by utilizing daylight. The current method
built-in energy model is a simplified method, and several approaches were developed to compensate for
the limitation of the current energy model. Here are some of the methods developed to overcome this
limitation.
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Building energy model with two different models

Even though integrating two white-box models improves the prediction of building energy use, the most
significant limitation of integration is related computational time to simulate both white-box models. To
overcome this limit, the black-box model can support reducing computational time with reasonable
prediction. This method allows the use of the black-box model in the initial design stages where data is
limited to the use black-box model.
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Recent tool development

The building energy modeling tools are continuously developed and their capacity is updated, which
makes it difficult to discuss the tools’ capacities since there will be a new update soon. For that reason,
the section discusses each tool’s engine or base where it starts and summarizes its pros and cons of the
current released version.

The most popular commercial tools used in the industry can be divide by what type of engine it uses.
Some commercial tools are run based on an open-source engine like EnergyPlus (https://energyplus.net/).
Others like TRACE700 (https://www.trane.com/commercial/north-america/us/en/products-
systems/design-and-analysis-tools/trace-700.html), developed by Trane were built with an engine based
on ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning).

The greatest benefit of the open-source engine is data sharing and module insertion. The user can revise
and add new components to the engine. The benefit of a closed-source engine is that it is verified and
more reliable. However, with the rapid development of new technologies and new methods, open-source
engines are more frequently mentioned in the market because of their ability to adapt to state-of-the-art
technology.

Some of the major open-source tools can be grouped to what engine it uses. The most dominant engine in
the US market is EnergyPlus, another engine can be DOE-2 (https://doe2.com/). One of the popular
EnergyPlus based tools is DesignBuilder (DB, https://designbuilder.co.uk/), which is a standalone tool
that includes parts of Radiance (https://www.radiance-online.org/) and a simplified CFD model. DB has a
relatively easy process that can be used to build complex geometry and an easy to create complex zoning.
For DOE-2, eQuest (https://doe2.com/equest/index.html) is the most popular tool in the market. Since it
was open-source for more than a decade, several practitioners still use the tool.


https://doi.org/10.1016/j.apenergy.2020.114624

CEBD: Yun Kyu Yi

Some of the building energy tools were integrated into CAD tools like Rhino
(Grasshopper)(https://www.rhino3d.com/) or Dynamo (https://www.autodesk.com/products/dynamo-
studio/overview). These CAD tools use a graphic program interface that allows users to easily control
geometry. Ladybug (https://www.ladybug.tools/), ClimateStudio (previously called Diva-for-Rhino,
https://www.solemma.com/climatestudio), and OpenStudio SketchUp Plug-in
(https://www.openstudio.net/) are three major building energy tools that embed into NURBS (Non-
Uniform Rational Basis Spline) CAD tools. The most beneficial things about these tools are that it makes
it easy to test energy performances in the early design stage to find a better design solution. However, it is
comparatively complicated for beginners to use and has the limitation of populating complex HVAC
(Heating, ventilation, and air conditioning) systems and zoning.

Another trend in building energy tools is web-based energy simulation tools. Sefaira
(https://www.sketchup.com/products/sefaira), and cove.tool (https://www.cove.tools/), are the most well
know tools as cloud-based simulation tools. The benefit of cloud-based simulation is fast and easy to use.
However, tools have limited parameters that difficult to use for sophisticate or complex geometry.

One of the tools frequently used by HVAC professions is TRACE700. TRACE700 has a closed-source
engine, which is built by TRANE, a company expert in the HVAC system. However, TRACE700 will
replace by TRACE3Dplus (https://www.trane.com/commercial/north-america/us/en/products-
systems/design-and-analysis-tools/trane-design-tools/trace-3d-plus.html) which is based on EnergyPlus.
IES (https://www.iesve.com/software/building-energy-modeling), which is another tool that uses its
engine. It has various engines and is integrated into one platform.

Other well-known building energy simulation tools that are not frequently used in the US include esp-r,
DeST, and WUFI Plus. The following references discuss in more detail on comparison between different
simulation tools.

Reference:
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Summary

The white box model is sophisticated and validates. It is the main reason why it is widely used in the
field. However, its complexity and significant dependence on physical properties require careful attention.
The study reviewed current methods and related papers that integrate different white-box models to
improve its prediction. As discussed, it is important to understand that the white-box model is not always
applicable to any problems related to building energy use and it is requiring careful investigation to find
the right model to use.
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White, Black, Gray Box Modelling

Low order white box modeling technique
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1. Building thermal modeling

1.1. White (or forward), grey, and black box model for building simulation

A large number of models of the static and dynamic approaches have been used in the
presentation of the thermal behavior of buildings. It was proposed to classify the sets of these
models into three categories, the white, the black and the grey boxes models. Depending on the

static and dynamic approaches, some of the models have been very successful in describing the
thermal behavior of large residential buildings. Others have been used to estimate the thermal-
energy demands or in the prediction of heat consumption and reducing energy consumption.

References:

Khan, M.E. and Farmeena, K. (2012) A Comparative Study of White Box, Black Box and Grey
Box Testing Techniques. International Journal of Advanced Computer Science and
Applications, 3, 12-15.

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective
Energy Management. Smart Grid and Renewable Energy: 95-112.

1.2. What to model in building energy simulation? — occupancy behavior
and building thermal behavior

According to occupant control level, appliances driven loads can be categorized into two classes,
responsive loads and unresponsive loads. Responsive loads includes plug loads, lighting loads,
laundry and drying machines, dishwashers, cooking ranges, heating thermostats (loads),
cooling thermostats (loads). Unresponsive loads includes refrigerator loads, freezer loads and
stand-by loads. In regards to electric heaters, with a responsive thermostat which controls the
output of the heater effectively and maintains a more consistent room temperature, the electric
heaters models without a thermostat require closer monitoring by the customer, and therefore
are associated with unresponsive loads.

Another important analysis procedure of building energy simulation is the description of
building thermal behavior by an energy balance model shown in Equation (1). Heating or
cooling load can be predicted by this model, which is used for system and equipment selection.

Qi+Qc+Qs+Qv+Qe=AS

Qi — internal heat gain

Qc — conduction heat gain or loss

Qs — solar heat gain

Qv — ventilation heat gain or loss

Qe — evaporative heat loss

AS— change in heat stored in the building

References:

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective
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Energy Management. Smart Grid and Renewable Energy: 95-112.

Singh, R. and Vyakaranam, B. (2012) Evaluation of Representative Smart Grid Investment
Grant  Project Technologies:  Distributed  Generation. PNNL, Richland.
http://www.esc.gov.yk.ca/

Energy Solution Centre (2011) Easy$ Tip Sheets—Energy Advice Saving Yukoners Money.
Energy Solution Centre Report, Whitehorse, 1-4. www.esc.gov.yk.ca

1.3. Systems involved in building energy use simulation

To maintain a comfortable environment, there have to be some systems to meet human
requirements. Systems involved in building energy use include HVAC and domestic hot water
system, lighting and plug-in system, and some other ultimate and special usage system.

2. White box model

White box testing is a test case design method that uses the control structure of the procedural
design to derive test cases, which require a significant amount of expertise. To build the control
structure, physical significance must be known to develop the theoretical basis.

Reference:

Khan, M.E. and Farmeena, K. (2012) A Comparative Study of White Box, Black Box and Grey
Box Testing Techniques. International Journal of Advanced Computer Science and
Applications, 3, 12-15.

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective
Energy Management. Smart Grid and Renewable Energy: 95-112.

2.1. Static and dynamic thermal response of buildings

In static conditions, the conduction heat transfer follows the Fourier Law, which states that the
negative gradient of temperature and the time rate of heat transfer is proportional to the area at right
angles of that gradient through which the heat flows.

Due to thermal inertia of envelope, there exists delay and attenuation the heat flow through a
real wall compared with a “zero-mass” wall of the same U-value. The greater thermal mass is,
the more daily temperature swings dampen.

2.2.1. Different equation types of white models

2.2.2. Static conditions

For static conditions, linear equations for conduction, convective heat transfer and solar energy
received and a non-linear equation (Stefan-Boltzmann equation) for radiative heat transfer were
considered.

g=L(T-T)—Al+e
G = h A-(L,~T)

Linear equations:



http://www.esc.gov.yk.ca/

Pengyuan Shen

q : Heat transfer rate (W);

L: Coefficient of static losses (W/°C);

T —Ta : Difference between indoor and outdoor temperature (°C);

As : Equivalent surface (m?);

I : Solar energy received by a vertical wall (W/m?),

€ : Depends by the state of variables measured at the beginning and end of the period
observational (W)

T2 —T1: Difference between the boundary and ambient temperature (°C);

h: Convective heat transfer coefficient (W/m?°C)

A: heat transfer area of the surface (m?).

q-ll :g'(j'A'(Tj_Tjr)

Non-linear equation:

q : Emitted heat transfer rate (W);

€ : Surface emissivity;

o : Stefan-Boltzmann constant ( 5.669x10—8m’K*)
A: Radiation surface (m?).

2.2.3. Dynamic conditions
For dynamic conditions, an ordinary differential equation can be used to analyze temperature
variation with time as shown in the following equation.

ar _
dr

C U-(T-T,)

C: Thermal capacity (J/K),

U: Overall heat transmission coefficient (W/m?K),

t: time.

To acquire the temporal-spatial temperature distribution, partial linear differential equations are
utilized.

&'T(x,7) 1 0T(x,7)
ox a Or

u (x,t ) : Temperature at position x and time (t),
o: Thermal diffusivity (mm?%/s) - measures the rate of transfer of heat of a material from the hot
end to the cold end.

Reference:

Christian, N., Dirk, J., Burhenne, S. and Florita, A. (2011) Modellbasierte Methoden fiir die
Fehlererkennung und Optimierung im Gebdudebetrieb. Fraunhofer ISE, Technical Report
0327410A-C, 1-276.
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3. Black box model

Black box testing treats the software as a “Black Box” — without any knowledge of internal
working and it only examines the fundamental aspects of the system. In the black-box, the
parameters are generally adjusted automatically in training procedure. Therefore, the
relationship with physical fundamental principles is Implicit in black box models.

Reference:

Khan, M.E. and Farmeena, K. (2012) A Comparative Study of White Box, Black Box and Grey
Box Testing Techniques. International Journal of Advanced Computer Science and
Applications, 3, 12-15.

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective
Energy Management. Smart Grid and Renewable Energy: 95-112.

3.1. Pros and cons of white and black box models

3.1.1.  White box:

Pros:

*  Clear model internal structure

*  Extrapolation enabled (under various scenarios)
*  Physical meaning

*  Can be used for optimization

Cons:

*  Need great amount of expertise

* Hard to calibrate

*  Sometimes need great amount of computation

3.1.2. Black box:

Pros:

*  Calibrated while modeling

*  Less computation

*  Can be used for fault detection

Cons:

*  Cannot be used for optimization

* Internal structure unknown

*  Unable for extrapolation (extreme conditions or scenarios)

4. Why low-order white box model?
There are certain drawbacks in the white box model, which needs to be improved.

4.1. Dynamic conduction heat transfer simulation in white box model

In cooling load and energy calculation, building simulation and energy analysis, conduction
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heat transfer is usually modeled as a one-dimensional, transient process with constant material
properties. The simplified heat diffusion equation in Cartesian coordinates is shown in the first
following equation. Since the first equation is a partial differential equation, the system is
usually solved numerically, often by means of conduction transfer function methods.

o°T(x,7) 1 6T(x,7)

ox’ a or
ol (x.t
q= _k#
ox

The method results in a simple linear equation that expresses the current heat flux in terms of
the current temperature and temperature and heat flux histories.

N" ‘NX AN?
qo.&‘ = _z Y;];sﬂfno' + Z anwosﬂfmf + Z gbnqoﬂfmi
n=>0 n=0 n=1

Ny

N N,
qi.é’ = _Z Z}JIZS.bL}rc‘i + z Kw]"asﬂfm)' + z gbrrqiﬂfn&
n=0 n=0 n=l

where q0 and qi are heat flux at exterior and interior surface, respectively. Xn, Yn and Zn are
surface-to-surface exterior, cross and interior CTF coefficient, respectively. Tis and Tos are
interior and exterior surface temperature, respectively. Nx, Ny and Nz are number of exterior,
cross and interior CTF terms, respectively. on is flux coefficient. N¢ is the number of flux
history terms. The subscript 0 represents the current time, and § is time step. The zero subscript
represents a current value.

References:

Incropera, F.P. and DeWitt, D.P. Introduction to heat transfer, 3rd ed. Wiley, New York, NY.,
1996.

Chen Youming, et. al. (2006). Investigation of the Accuracy of Calculation Methods for
Conduction Transfer Functions of Building Construction. ICEBO2006, Shenzhen, China.

4.2. Two main methods to solve the equation

*  Numerical methods (TRNSYS): e.g., Direct root-finding algorithms, State space method
(EnergyPlus)

*  Frequency domain methods (BLAST): e.g., Laplace transform...

*  Frequency domain regression methods
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References:

Chen Youming, et. al. (2006). Investigation of the Accuracy of Calculation Methods for
Conduction Transfer Functions of Building Construction. ICEBO2006, Shenzhen, China

Wang, S.,&Chen, Y.. (2003). Transient heat flow calculation for multilayer constructions using
a frequency-domain regression method. Building and Environment, 38(1), 45-61.

Harish, V.s.K.V. & Kumar, Arun. (2016). A review on modeling and simulation of building
energy systems. Renewable and Sustainable Energy Reviews. 56. 1272-1292.

4.2.1. State space method

The basic state space system is defined by the following linear matrix equations:

al_

O LL+ B
=T+ 0fe]

where x is a vector of state variables, u is a vector of inputs, y is the output vector, t is time, and
A, B, C, and D are coefficient matrices.
Through the use of matrix algebra, the vector of state variables (x) can be eliminated from the

system of equations, and the output vector (y) can be related directly to the input vector (u):

T,

1

d

ALl : +[3]m

n

1,

e

n

where T1, T2, ..., Tn-1, Tn are the finite difference nodal temperatures, n is the number of nodes,

Ti and To are the interior and exterior environmental temperatures, and and are the heat fluxes.

References:

US Department Of Energy. (2010). EnergyPlus Engineering Reference: The Reference to
EnergyPlus Calculations.

4.2.2. Frequency domain methods (FDR):

In FDR method, the frequency characteristics of the total transmission matrix are calculated
within the frequencyrange concerned firstly. Then, a set of linear equations is solved to yield a
simple polynomial function. Finally, the response factors are obtained simply by applying
inverse Laplace transforms or Z-transforms on the polynomial s-transfer function.
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Ti(s), To(8), as(s), and qy(s) are

i) :;T(\‘ 5) the temperature and flux terms in
di? a the Laplace domain.
T Lo 4 [Tl(»)w F() B'W r;(.s)}
¢ (x.5) =k fj“"" a() | lcts) D) [als)
x

1% layer
Transmission
matrix:
4(s) cosh ]Js/al
. f;" ((SS)J{T (Sﬂ _ Bl(s):(l"f‘f(l sfa, ]smh(f NETS )
i l — C(s)=kls/e, sinh[ﬁ‘fs/a])

D (s)= cosh(fl,(s/ot1 ] ,

k, is the thermal conductivity of the layer,

T ( 5') 1(s B s*)_ T (s) a, is the thermal diffusivity of the layer,
1\ i E + - R
|:91 ( $ J |: ) }

and |, is the thickness of the layer

: L@ (
/ % D(s) -1

L (s)] [4,(s) B,(5) {%(f)}: B(s) B(s) {;ﬁ(s)}
J C,(s) .D”(.s-)} Gl | 1 —d(s) [ Tals)

B(s) Bi(s)

References:

Wang, S.,&Chen, Y.. (2003). Transient heat flow calculation for multilayer constructions using
a frequency-domain regression method. Building and Environment, 38(1), 45-61.

4.2.3. Frequency domain vs. State space

Through the use of relatively simple matrix algebra, the state space variables (nodal
temperatures) can be eliminated to arrive at a matrix equation that gives the outputs (heat fluxes)
as a function of the inputs (environmental temperatures) only. This eliminates the need to solve
for roots in the Laplace domain.

The resulting matrix form has more physical meaning than complex functions required by the
Laplace transform method.

For an adequate number of nodes the state space method computed a heat flux at the surface of
a simple one layer slab within 1% of the analytical solution.

References:

Chen Youming, et. al. (2006). Investigation of the Accuracy of Calculation Methods for
Conduction Transfer Functions of Building Construction. ICEBO2006, Shenzhen, China.

Wang, S.,&Chen, Y.. (2003). Transient heat flow calculation for multilayer constructions using
a frequency-domain regression method. Building and Environment, 38(1), 45-61.
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4.2.4 Real multi-zone building can be complicated (than the calculations
of wall components)

4 0 heat ransport
theral balance between woms
] I
7o heattr
internal heat gain thermal b
between
internal heat gain ﬁ a

transmission loss thoough grownd floor

When the model gets more complicated, the solving of the dynamic heat transfer function
consumes more computation. For the conventional numerical method, the state space method
and frequency domain method (the solvers that most white box simulation tools nowadays use),
the solution of the dynamic heat transfer sometimes brings about inaccuracies and usually costs

great amount of computation.

The reasons of people turn to low-order/reduced-order white box model include faster in
computation (also means faster calibration and optimization), less inputs compared with pure
white box modeling, physical significance kept.

4.3. Low-order white box modeling: The electrical analogue — lumped
capacitance

Here we introduced the concept of thermal capacity of building denoted by Cr, in the electric
circuit analog model (RC) that is used to describe heat flow and heat transfer phenomena.
Where, Cr equal to the air mass (m) in the room times the specific heat capacity of air (cp)
which change with time as shown in the following Equations (1) and (2). This method makes a
simplified building model and solutions can be easily found.

References:

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective
Energy Management. Smart Grid and Renewable Energy: 95-112.
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4.4. The prediction of indoor air temperature
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The low-order white box modeling is also able to catch some of the dynamic nature of building
thermal performance due to the impacts of both thermal resistance and capacitance. For
example, using the above SR1C electrical analogue model taking into account of the thermal
transmittance between adjacent zones, it is possible to have a comparatively high confidence in
predicting zone internal air temperature when thermal mass is not too high. For example, here
is an example of comparing indoor air temperature simulation of a simple residential building
in Philadelphia predicted by the SR1C model to its benchmark simulation results produced by
the white box simulation engine - EnergyPlus:
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However, it should be noted that deviations may occur when heavy thermal mass is used in

such low-capacitance-order white model.

References:

Shen, P., Braham, W., Yi, Y., 2018. Development of a lightweight building simulation tool using
simplified zone thermal coupling for fast parametric study. Applied Energy 223, 188-214.
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4.5. The difference between low order white model and grey box model

Grey box

-~

Low order white box

Physical
parameters

Calibration

Low order white box modeling involves physical parameters that do have a real thermophysical
meaning for buildings, and the calibration procedure deals with the tuning of those parameters,
while the calibration of grey box models usually deals with guessing and turning of the

imaginary (or “proxy”) parameters that represents the overall performance of the building
envelopes or heat gain (loss).

4.6. Pros and cons of low order white box:

Pros:

*  Clear model internal structure

*  Extrapolation enabled (under various scenarios)
*  Physical meaning

*  Can be used for optimization

Cons:

*  Lose some predictive accuracy compared with pure white box model
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Agent based Modelling (Occupant behaviour Modelling)
Machine Learning and Building Energy prediction:
Ensemble models:

Air quality and Indoor emission:
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Agent based Modelling (Occupant behaviour Modelling)

Occupant behaviour is hard to track inside a thermal zone whereas occupant number (count) is relatively
easy to track. Uncertainties in energy estimation has been tracked to occupant behaviour. Among others,
one approach to track occupant behaviour is by using Agent-based modelling (ABM). At the UrbSys Lab,
University of Florida, we have done extensive studies of using ABM for improving energy estimations.
For this purpose, we used LBNL’s Building Control Virtual Test Bed (BCVTB) that linked both
EnergyPlus™ and an ABM, PMFServ (from University of Pennsylvania). Some significant work in this
area are listed below.

1) lJia, M., Srinivasan, R.S., Ries, R., Weyer, N., Bharathy, G. (2019). A systematic development
and validation approach to a novel agent-based modelling of occupant behaviours in commercial
buildings. Energy and Buildings, 199: 352-367; https://doi.org/10.1016/j.enbuild.2019.07.009

2) Jia, M., Srinivasan, R.S., Ries, R., Bharathy, G., Weyer, N. Investigating the Impact of Actual
and Modeled Occupant Behavior Information Input to Building Performance Simulation.
Buildings 2021, 11(1), 32; https://doi.org/10.3390/buildings1101003

3) Jia, M. and Srinivasan, R.S. (2020). Building Performance Evaluation using Coupled Simulation
of EnergyPlus™ and an Occupant Behavior Model. Sustainability 2020, 12(10), 4086.
https://doi.org/10.3390/su12104086

4) Jia M, Srinivasan R.S., Raheem A.A. (2017). From Occupancy to Occupant Behavior: An
Analytical Survey of Data Acquisition Technologies, Modeling Methodologies, and Simulation
Coupling Mechanisms for Building Energy Efficiency. Renewable and Sustainable Energy
Reviews, 68(1): 525-540; https://doi.org/10.1016/j.rser.2016.10.011

5) Mengda, J., Srinivasan, R.S., Bharathy, G., Silverman, B.S., Weyer, N. An Agent-based Model
Approach for Simulating Interactions between Occupants and Building Systems. Building
Simulation 2017; https://doi.org/10.26868/25222708.2017.673 (Conference)

6) Berger, Christiane, and Ardeshir Mahdavi. "Review of current trends in agent-based modeling of
building occupants for energy and indoor-environmental performance analysis." Building and
Environment 173 (2020): 106726. https://doi.org/10.1016/i.buildenv.2020.106726

7) Dziedzic, Jakub Wladyslaw, Da Yan, Hongsan Sun, and Vojislav Novakovic. "Building occupant
transient agent-based model-Movement module." Applied Energy 261 (2020): 114417.
https://doi.org/10.1016/j.apenergy.2019.114417

8) Micolier, Alice, Franck Taillandier, Patrick Taillandier, and Frédéric Bos. "Li-BIM, an agent-
based approach to simulate occupant-building interaction from the Building-Information
Modelling." Engineering Applications of Artificial Intelligence 82 (2019): 44-59.
https://doi.org/10.1016/j.engappai.2019.03.008

9) Vellei, Marika, Simon Martinez, and Jérdme Le Dréau. "Agent-based stochastic model of
thermostat adjustments: A demand response application." Energy and Buildings 238 (2021):
110846. https://doi.org/10.1016/j.enbuild.2021.110846

10) Chong, Adrian, Godfried Augenbroe, and Da Yan. "Occupancy data at different spatial
resolutions: Building energy performance and model calibration." Applied Energy 286 (2021):
116492. https://doi.org/10.1016/j.apenergy.2021.116492

Machine Learning and Building Energy prediction:

ML approaches to building energy prediction has gained more traction owing to processing power and
data availability. Such predictions can be extended beyond one building, i.e., to a university-campus or
even entire cities. There are several ML approaches that may be used, however, there is no one type of
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https://doi.org/10.1016/j.engappai.2019.03.008
https://doi.org/10.1016/j.enbuild.2021.110846
https://doi.org/10.1016/j.apenergy.2021.116492
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ML that fits a type of building. The selection of ML is based on dependent and independent variables;
data availability including weather; frequency; and other uncertainties in data. Below, you can find some
examples of individual to campus buildings’ energy use prediction. Our work related to campus buildings
(refer to the first article below) uses time-series data and we found that ARIMA was best suited for such

data.
1)

2)

3)

4)

5)

6)

7)

8)

9)

Fathi, S., Srinivasan, R.S., Kibert, C.J., Steiner, R.L., and Demirezen, E. Al-based Campus
Energy Use Prediction for Assessing the Effects of Climate Change. Sustainability 2020, 12,
3223; http://dx.doi.org/10.3390/su12083223

Wang, Z., Wang, Y., Srinivasan R.S. (2018). Random Forest-based Hourly Building Energy
Prediction. Energy and Buildings, 171 (15): 11-25; https://doi.org/10.1016/j.enbuild.2018.04.008
Wang, Z., Srinivasan, R.S., Shi, J. (2016). Artificial Intelligence Models for Improved Prediction
of Residential Heating. ASCE Journal of Energy Engineering, 142(4)
https://ascelibrary.org/doi/abs/10.1061/%28 ASCE%29EY.1943-7897.0000342

Amasyali, Kadir, and Nora El-Gohary. "Machine learning for occupant-behavior-sensitive
cooling energy consumption prediction in office buildings." Renewable and Sustainable Energy
Reviews 142 (2021): 110714. https://doi.org/10.1016/j.rser.2021.110714

Lei, Lei, Wei Chen, Bing Wu, Chao Chen, and Wei Liu. "A building energy consumption
prediction model based on rough set theory and deep learning algorithms." Energy and Buildings
(2021): 110886. https://doi.org/10.1016/j.enbuild.2021.110886

Fan, Cheng, Yongjun Sun, Yang Zhao, Mengjie Song, and Jiayuan Wang. "Deep learning-based
feature engineering methods for improved building energy prediction." Applied energy 240
(2019): 35-45. https://doi.org/10.1016/j.apenergy.2019.02.052

Guo, Yabin, Jiangyu Wang, Huanxin Chen, Guannan Li, Jiangyan Liu, Chengliang Xu,
Ronggeng Huang, and Yao Huang. "Machine learning-based thermal response time ahead energy
demand prediction for building heating systems." Applied energy 221 (2018): 16-27.
https://doi.org/10.1016/j.apenergy.2018.03.125

Singaravel, Sundaravelpandian, Johan Suykens, and Philipp Geyer. "Deep-learning neural-
network architectures and methods: Using component-based models in building-design energy
prediction." Advanced Engineering Informatics 38 (2018): 81-90.
https://doi.org/10.1016/j.a¢1.2018.06.004

Zeki¢-Susac, Marijana, Sasa Mitrovi¢, and Adela Has. "Machine learning based system for
managing energy efficiency of public sector as an approach towards smart cities." International
Jjournal of information management 58 (2021): 102074.
https://doi.org/10.1016/j.ijinfomgt.2020.102074

10) Ahmad, Tanveer, Huanxin Chen, Ronggeng Huang, Guo Yabin, Jiangyu Wang, Jan Shair, Hafiz

Muhammad Azeem Akram, Syed Agha Hassnain Mohsan, and Muhammad Kazim. "Supervised
based machine learning models for short, medium and long-term energy prediction in distinct
building environment." Energy 158 (2018): 17-32. https://doi.org/10.1016/j.energy.2018.05.169

Ensemble models:

Instead of using a single ML for prediction, one approach is to use ensemble models (homogenous and
heterogenous). Below, you can see some excellent examples of ensemble modeling of building energy
prediction.
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1)

2)

3)

4)

5)

6)

7)

8)

9)

Wang Z, Srinivasan R.S. (2017). A Review of Artificial Intelligence based Building Energy Use
Prediction: Contrasting the Capabilities of Single and Ensemble Prediction Models. Renewable
and Sustainable Energy Reviews. 75:796-808; https://doi.org/10.1016/j.rser.2016.10.079
Wang, Z., Srinivasan, R.S. (2017). A Review on Applications of Artificial Intelligence based
Building Energy Use Prediction with a Focus on Single vs Ensemble Prediction Models —
Contrasting their Capabilities. Renewable & Sustainable Energy Reviews, 75: 796-808;
https://doi.org/10.1016/j.rser.2016.10.079

Wang, S., Zheng, P., Srinivasan, R.S. (2017). A Novel Ensemble Learning Approach to Support
Building Energy Use Prediction. Energy and Buildings, 159(15): 109-122;
https://doi.org/10.1016/j.enbuild.2017.10.085

Wang, Lan, Eric WM Lee, and Richard KK Yuen. "Novel dynamic forecasting model for
building cooling loads combining an artificial neural network and an ensemble approach."
Applied Energy 228 (2018): 1740-1753. https://doi.org/10.1016/j.apenergy.2018.07.085

Dong, Zhenxiang, Jiangyan Liu, Bin Liu, Kuining Li, and Xin Li. "Hourly energy consumption
prediction of an office building based on ensemble learning and energy consumption patterns
classification." Energy and Buildings (2021): 110929.
https://doi.org/10.1016/j.enbuild.2021.110929

Huang, Yao, Yue Yuan, Huanxin Chen, Jiangyu Wang, Yabin Guo, and Tanveer Ahmad. "A
novel energy demand prediction strategy for residential buildings based on ensemble learning."
Energy Procedia 158 (2019): 3411-3416. https://doi.org/10.1016/j.apenergy.2020.115025
Al-Rakhami, Mabrook, Abdu Gumaei, Ahmed Alsanad, Atif Alamri, and Mohammad Mehedi
Hassan. "An ensemble learning approach for accurate energy load prediction in residential
buildings." IEEE Access 7 (2019): 48328-48338. DOI: 10.1109/ACCESS.2019.2909470

S. Kumar T.M., C. P. Kurian and S. G. Varghese, "Ensemble Learning Model-Based Test
Workbench for the Optimization of Building Energy Performance and Occupant Comfort," in
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Air quality and Indoor emission:

Below you can see examples of low cost, affordable indoor air quality monitoring approaches. Currently,
we are using mixed methods research (using both qualitative and quantitate data) to interpret/ model/
correlate to identify factors influencing indoor air pollution in buildings. This work is still not published.
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White, Black, Gray Box Modelling

Black Box and HVAC Controls: Measuring the Right Factors

Nancy Ma, Center for Environmental Building & Design

Why model IAQ and thermal comfort?
1. Humans spend up to 90% of their time in indoors. We live, work, and learn in buildings
2. Socio-economic benefits of improved indoor environmental quality (IEQ)
3. Buildings don’t use energy, people do
4. Indoor air quality (IAQ) and health problems statistics
What factors have been measuring?
1. Controllable variables
2. Control components, parameters, mode, and algorithm
3. The discrepancy of building performance and human health/thermal comfort
4. Physics-based thermoregulation models + CFD
What variables are worth measuring?

Analytical models of thermal comfort: steady state and adaptive comfort
models

1. Thermal comfort: steady state models

2. Thermal comfort: adaptive comfort models

3. Application and limitations
Analytical models of IAQ

1. Models of determining CO2 concentrations

2. Models of determining airborne contaminants concentrations
Thermal comfort and health defined data-driven system

Research articles on machine learning application for indoor climate control
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Ma, Nan, Dorit Aviv, Hongshan Guo, and William W. Braham. "Measuring the right
factors: A review of variables and models for thermal comfort and indoor air
quality.” Renewable and Sustainable Energy Reviews 135 (2021): 110436.

1. Humans spend up to 90% of their time in indoors. We live, work, and learn in buildings

This study analyzed data from a web-based survey administered to 52,980 occupants in 351
office buildings over 10 years by the Center for the Built Environment. The most important
parameters were satisfaction with amount of space, noise level, and visual privacy. Satisfaction
with amount of space was ranked to be most important for workspace satisfaction, regardless of
age group, gender, type of office (single or shared offices, or cubicles), distance of workspace
from a window (within 4.6 m or further), or satisfaction level with workspace (satisfied or
dissatisfied). Satisfaction with amount of space was not related to the gross amount of space
available per person.

Frontczak, Monika, Stefano Schiavon, John Goins, Edward Arens, Hui Zhang, and Pawel
Wargocki. "Quantitative relationships between occupant satisfaction and satisfaction aspects of
indoor environmental quality and building design." Indoor air 22, no. 2 (2012): 119-131.

In this review article, the authors summarize recent advances in source characterization,
exposure assessment, health effects associated with indoor exposures, and intervention
research related to indoor environments. They concluded that more research is needed on the
interactions of multiple exposures, and the risks to certain populations (such as children, the
elderly, or socioeconomically disadvantaged populations). Identification of research priorities
should include input from building designers, operators, and the public health community.
Research on interventions should examine a range of outcomes and potential tradeoffs and
confounders, and does not necessarily need to await the identification of specific causal agents.

Mitchell, Clifford S., Junfeng Zhang, Torben Sigsgaard, Matti Jantunen, Paul J. Lioy, Robert
Samson, and Meryl H. Karol. "Current state of the science: health effects and indoor
environmental quality." Environmental health perspectives 115, no. 6 (2007): 958-964.

2. Socio-economic benefits of improved indoor environmental quality (IEQ)

This is a great book which covers origins and foundations of the built environment as a public
health focus and its joint history with urban planning, transportation and land use, infrastructure
and natural disasters, assessment tools, indoor air quality, water quality, food security, health
disparities, mental health, social capital, and environmental justice.

Lopez, Russell P. The built environment and public health. Vol. 16. John Wiley & Sons, 2012.

The authors outlined the following priority research topics in below article: building-influenced
communicable respiratory infections, building-related asthma/allergic diseases, and nonspecific
building-related symptoms; indoor environmental science; and methods for increasing
implementation of healthful building practices. Available data suggest that improving building
environments may result in health benefits for more than 15 million of the 89 million US indoor
workers, with estimated economic benefits of $5 to $75 billion annually.
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Mendell, Mark J., William J. Fisk, Kathleen Kreiss, Hal Levin, Darryl Alexander, William S. Cain,
John R. Girman et al. "Improving the health of workers in indoor environments: priority research
needs for a national occupational research agenda." American journal of public health 92, no. 9
(2002): 1430-1440.

This study estimates some of the benefits and costs of implementing scenarios that improve
indoor environmental quality (IEQ) in the stock of U.S. office buildings. The scenarios include
increasing ventilation rates when they are below 10 or 15 I/s per person, adding outdoor air
economizers and controls when absent, eliminating winter indoor temperatures >23°C, and
reducing dampness and mold problems.

Fisk, William J., Doug Black, and Gregory Brunner. "Benefits and costs of improved IEQ in US
offices." Indoor Air 21, no. 5 (2011): 357-367.

3. Buildings don’t use energy, people do

This article argues that building users play a critical but poorly understood and often overlooked
role in the built environment. To fully address the task ahead, it argues that architects need to
develop their professional expertise to improve buildings and seek ways of integrating user
involvement in building performance.

Janda, Kathryn B. "Buildings don't use energy: people do." Architectural science review 54, no. 1
(2011): 15-22.

This paper presents ten questions, highlighting some of the most important issues regarding
concepts, applications, and methodologies in occupant behavior research. It is crucial to
understand occupant behavior in a comprehensive way, integrating qualitative approaches and
data- and model-driven quantitative approaches, and employing appropriate tools to guide the
design and operation of low-energy residential and commercial buildings that integrate
technological and human dimensions.

Hong, Tianzhen, Da Yan, Simona D'Oca, and Chien-fei Chen. "Ten questions concerning
occupant behavior in buildings: The big picture.” Building and Environment 114 (2017): 518-530.

The authors reviewed papers published over the last five years (from 2014 to 2019) and
presented information about questionnaires, interviews, brainstorming, post-occupancy
evaluation, personal diaries, elicitation studies, ethnographic studies, and cultural probe.
Increasing use of qualitative methods is expected to support the spread of human-centric
policies and design/control of buildings, with a consequent overall optimization of energy
performance of buildings as well as the comfort of occupants.

Bavaresco, Mateus V., Simona D'Oca, Enedir Ghisi, and Roberto Lamberts. "Methods used in
social sciences that suit energy research: A literature review on qualitative methods to assess the
human dimension of energy use in buildings." Energy and Buildings 209 (2020): 109702.

The authors attempt to rethink occupant behavior and its role in building energy performance by
means of review. The review focuses on four critical research topics: a) the current
understanding of occupant behavior, with particular focus on window opening behavior, lighting
control behavior, and space heating/cooling behavior; b) methods and techniques for collecting
data on behavior and building energy performance; c) quantitative modeling of occupant
behavior and building energy performance; and d) evaluation of energy saving potentials of
occupant behavior based on existing literature. They concluded that the energy-saving potential
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of occupant behavior to be in the range of 10%—-25% for residential buildings and 5%—-30% for
commercial buildings, based on findings of existing research.

Zhang, Yan, Xuemei Bai, Franklin P. Mills, and John CV Pezzey. "Rethinking the role of occupant
behavior in building energy performance: A review." Energy and Buildings 172 (2018): 279-294.

4. Indoor air quality (IAQ) and health problems statistics

Below study summarizes the historical development and understanding on environmental
exposures/risks and indoor air. Indoor air was believed to be a major environmental factor for
more than a hundred years, from the start of the hygienic revolution, around 1850, until outdoor
environmental issues entered the scene, and became dominant around 1960. Main
environmental issues today are outdoor air quality, energy use, and sustainable buildings, but
not indoor air quality (IAQ).

Sundell, Jan. "On the history of indoor air quality and health." Indoor air 14, no. s 7 (2004): 51-58.

This overview has reviewed the literature about the effects of extended exposure to low
humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance,
sleep quality, virus survival, and voice disruption.

Wolkoff, Peder. "Indoor air humidity, air quality, and health—An overview." International journal of
hygiene and environmental health 221, no. 3 (2018): 376-390.

1. Controllable variables

This study presents a critical review of current modeling techniques used in HVAC systems
regarding their applicability and ease of acceptance in practice and summarizes the strengths,
weaknesses, applications and performance of these modeling techniques. Additionally, the
performance and outcome of some of the developed models used in real world HVAC systems
have been discussed.

Afroz, Zakia, G. M. Shafiullah, Tania Urmee, and Gary Higgins. "Modeling techniques used in
building HVAC control systems: A review." Renewable and sustainable energy reviews83 (2018):
64-84.

2. Control components, parameters, mode, and algorithm

Advanced control strategies provide a more efficient way of minimizing energy demand of
buildings and maintaining indoor environmental quality in accordance with global principle of
sustainability, which has also proven reliable for diverse applications such as Heating,
Ventilation and Air Conditioning (HVAC) control and thermal comfort control etc. The objective
of this paper is to review the control strategies in buildings, particularly focusing on low energy
buildings (LEB), in recent 10 years. Present work consists of why to use control strategies in
buildings, categories of control strategies, research literature for building performance affected
by diverse control strategies from the perspective of theoretical modelling, physical experimental
study and numerical simulation investigation. Following that, more than 20 parameters affecting
control performance have been analyzed and evaluated.
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Wang, Yang, Jens Kuckelkorn, and Yu Liu. "A state of art review on methodologies for control
strategies in low energy buildings in the period from 2006 to 2016."Energy and Buildings147
(2017): 27-40.

3. The discrepancy of building performance and human health/thermal comfort

The authors reviewed research fields of thermal comfort and building control, and their
relationship using a data-driven approach. They found that building control focuses
predominantly on energy savings rather than incorporating results from thermal comfort,
especially when it comes to occupant satisfaction.

Park, June Young, and Zoltan Nagy. "Comprehensive analysis of the relationship between
thermal comfort and building control research-A data-driven literature review." Renewable and
Sustainable Energy Reviews 82 (2018): 2664-2679.

4. Physics-based thermoregulation models + CFD

This paper first reviews several thermal comfort models that address local thermal sensations
and attempts to distinguish these models by their advantages, limitations and suitable ranges of
applications. Then, two typical thermal comfort models, the simple ISO 14505 standard method
and the comprehensive UC Berkeley thermal comfort model (UCB model), were coupled to
computational fluid dynamic (CFD) numerical simulation with different process to evaluate
thermal environment of a small office. The results indicated that compared with the UCB model,
the ISO 14505 index could be applied with caution as a convenient method to evaluate thermal
comfort in non-uniform, overall thermally neutral environments.

Cheng, Yuanda, Jianlei Niu, and Naiping Gao. "Thermal comfort models: A review and numerical
investigation." Building and environment 47 (2012): 13-22.

The Berkeley Comfort Model is based on the Stolwijk model of human thermal regulation but
includes several significant improvements. This new model proposed by the authors allows an
unlimited body segments (compared to six in the Stolwijk model). Each segment is modeled as
four body layers (core, muscle, fat, and skin tissues) and a clothing layer. Physiological
mechanisms such as vasodilation, vasoconstriction, sweating, and metabolic heat production
are explicitly considered. Convection, conduction (such as to a car seat or other surface in
contact with any part of the body) and radiation between the body and the environment are
treated independently. The model is capable of predicting human physiological response to
transient, non-uniform thermal environments.

Huizenga, Charlie, Zhang Hui, and Edward Arens. "A model of human physiology and comfort for
assessing complex thermal environments.” Building and Environment 36, no. 6 (2001): 691-699.

The authors investigated the pollutant exposure reduction and thermal comfort that can be
achieved with personalised ventilation (PV) design when a PV system is combined with two
types of background air conditioning systems. For the investigation of inhaled air quality,
pollutants emitted from building materials are the targeted pollutants; and for the investigation of
thermal comfort, local discomfort associated with nonuniform thermal environment is focused
upon. These investigations were performed by combining CFD simulation of the 3D air flow and
a multi-nodal human body thermo-regulation model. The results reveal some new
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characteristics of the three typical air distribution designs, i.e. mixed ventilation, displacement
ventilation and PV, and provide insight into the possible optimization of system combinations.

Gao, N. P., H. Zhang, and J. L. Niu. "Investigating indoor air quality and thermal comfort using a
numerical thermal manikin." Indoor and built environment 16, no. 1 (2007): 7-17.

This paper reviews the existing systems and proposes an innovation in HVAC systems
management: a system that tracks the occupants’ preferences, learns from them, and manages
HVAC automatically. We show that ambient intelligent systems can be used to control a
building’s Energy Management Systems (EMS), effectively reducing energy consumption while
maintaining acceptable comfort levels. Our results indicate that employing a k-means machine
learning technique enables the automatic configuration of an HVAC system to reduce energy
consumption while keeping the majority of occupants within acceptable comfort levels.

Carreira, Paulo, Anténio Aguiar Costa, Vitor Mansur, and Artur Arsénio. "Can HVAC really learn
from users? A simulation-based study on the effectiveness of voting for comfort and energy use
optimization." Sustainable cities and society 41 (2018): 275-285.

The objective of this paper is to highlight evidence and variables from empirical and
deterministic models, which are combined in analytical models that current machine learning
techniques often overlook. Eighteen critical variables are extracted from forty-five works closely
related to the field (as listed in the table).

Ma, Nan, Dorit Aviv, Hongshan Guo, and William W. Braham. "Measuring the right factors: A
review of variables and models for thermal comfort and indoor air quality.” Renewable and
Sustainable Energy Reviews 135 (2021): 110436.

Summary of input variables that are worthy measuring.

Subgroups? Variables of IAQ-related thermal comfort and health® Topics®
Environmental survey Outdoor temperature (T,,;) TC
Wind velocity (v,) TC+H
Outdoor relative humidity (RH ;) H
Outdoor contaminants concentration (C,,,;) H
Room dimensions® (Dim) H
Design Ceiling height (H) H
Total surface area (A) TC+H
Penetration factor through envelope/door (P) H
Material selection Radiant temperature (Tyz) TC
Temperature of surface® (T;) TC
Indoor relative humidity (RH;;,) TC+H
Volume flow rate (Natural, Mechanical, Infiltration) (Q) TC+H
Indoor temperature (T,) TC+H
Operation Alr dengity' ) . . . H
Contaminants generation/deposition/removal concentrations/rates (G) H
Number of occupants (N) H
Exposure time (t) TC+H
Air exchange rate (Ey) H

a Total eighteen input variables are arranged based on the different phases of buildings;
b The listed variables are given its abbreviation in parentheses to keep consist in Nomenclature, figures and tables;
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¢ TC and H represent that this variable stem from topics of thermal comfort and health respectively; TC+H means
thermal comfort and health fields both echo and cover this variable;

d Analytical models uses volume of a space more often, while it is determined from size of the space and ceiling
height;

€ Temperature of surface implies for surface temperatures of each material in accordance to air temperature;

f Air density is hardly measurable, but is correlated with air pressure, temperature, humidity and dew point.

1. Thermal comfort: steady state models

These two articles are the classic readings where Fanger proposed his thermal comfort models.

Fanger, Poul O. "Thermal comfort. Analysis and applications in environmental
engineering.” Thermal comfort. Analysis and applications in environmental engineering. (1970).

Fanger, Poul O. "Calculation of thermal comfort-introduction of a basic comfort
equation." ASHRAE Transacions 73 (1967).

2. Thermal comfort: adaptive comfort models

These three articles are the typical adaptive comfort models. The authors proposed different
correction coefficient to modify Fanger's model for different building types and ventilation
modes.

Yao, Runming, Baizhan Li, and Jing Liu. "A theoretical adaptive model of thermal comfort—
Adaptive Predicted Mean Vote (aPMV)." Building and environment 44, no. 10 (2009): 2089-2096.

Humphreys, Michael A., and J. Fergus Nicol. "The validity of ISO-PMV for predicting comfort
votes in every-day thermal environments." Energy and buildings 34, no. 6 (2002): 667-684.

Atmaca, Ibrahim, Omer Kaynakli, and Abdulvahap Yigit. "Effects of radiant temperature on
thermal comfort.” Building and environment 42, no. 9 (2007): 3210-3220.

3. Application and limitations

This paper looks critically at the foundation and underlying assumptions of the adaptive model
approach and its findings.

Halawa, Edward, and J. Van Hoof. "The adaptive approach to thermal comfort: A critical
overview." Energy and Buildings 51 (2012): 101-110.

A comprehensive summary of standards and guidelines as developed by various worldwide
organizations.

Abdul-Wahab, Sabah Ahmed, Stephen Chin Fah En, Ali Elkamel, Lena Ahmadi, and Kaan
Yetilmezsoy. "A review of standards and guidelines set by international bodies for the parameters
of indoor air quality.” Atmospheric Pollution Research 6, no. 5 (2015): 751-767.

The primary IAQ standards and guidelines stipulated by WHO and the United States’ authentic
agencies.

American Society of Heating, Refrigerating and Air Conditioning Engineer (ASHRAE)
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ANSI/ASHRAE Standard 621-2016 Ventilation for acceptable Indoor air Quality 2016
Occupational Safety and Health Administration (OSHA)

OSHA, OS. "OSHA Technical Manual-Section Ill: Chapter 2: Indoor Air Quality." (1999).
US Environmental Protection Agency (EPA)

Mudarri, David H. "Building codes and indoor air quality." US EPA (2010).

Koontz, M. D., G. M. Zarus, M. J. Stunder, and N. L. Nagda. "Air toxics risk
assessment.” (1991).

World Health Organization (WHO)

World Health Organization. "WHO guidelines for indoor air quality: selected pollutants.”
(2010).

World Health Organization. Air quality guidelines: global update 2005: particulate matter,
ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, 2006.

1. Models of determining CO, concentrations

The results indicate that, compared to the existing fixed ventilation rate strategy at which the
ventilation rate is always 5% of the total supply air flow, a cooling coil energy savings of 0.03%
and 1.86% can be achieved using an occupancy detection control strategy under the new
ASHRAE 62.1 and old ASHRAE 62 respectively, while preserving thermal comfort and indoor
air quality.

Ng, Malcolm Owen, Ming Qu, Pengxuan Zheng, Zhiyuan Li, and Yin Hang. "COz-based demand
controlled ventilation under new ASHRAE Standard 62.1-2010: a case study for a gymnasium of
an elementary school at West Lafayette, Indiana." Energy and Buildings 43, no. 11 (2011): 3216-
3225.

Experiments were conducted in a school office by measuring indoor CO- concentrations and
pressure differences between the return air vent and space. Excellent agreement was obtained.
At least 0.998 R? values were obtained for fitting measured CO, concentrations when
conducting MLE for estimating space air change rate, and the corresponding residual plots
showed no pattern and trend. The estimated numbers of occupants were same as the actual
ones. Furthermore, the predicted space air change rates showed great consistencies with those
from CO- equilibrium analysis. The model is simple, handy and effective for practical use.
Moreover, the model is also capable for dealing with time-varying space air change rates.

Lu, Tao, Anssi Knuutila, Martti Viljanen, and Xiaoshu Lu. "A novel methodology for estimating
space air change rates and occupant CO2 generation rates from measurements in mechanically-
ventilated buildings." Building and Environment 45, no. 5 (2010): 1161-1172.

2. Models of determining airborne contaminants concentrations

The review paper publication where you can find online elaborates and specifies all the
equations listed on the slides. In this summary | just pick three great articles that are worthy
reading in full text:
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Nazaroff, William W. "Indoor particle dynamics." Indoor air 14, no. Supplement 7 (2004):
175-183.

Walker, lain S., and Max H. Sherman. "Effect of ventilation strategies on residential
ozone levels." Building and environment 59 (2013): 456-465.

Ye, Wei, Doyun Won, and Xu Zhang. "A practical method and its applications to prioritize
volatile organic compounds emitted from building materials based on ventilation rate
requirements and ozone-initiated reactions." Indoor and Built Environment 26, no. 2
(2017): 166-184.

Thermal comfort and health defined data-driven system

There are two review papers which are also comprehensive to summarize ANN structure, input
features, outcome variables, and how machine learning techniques help forecast thermal
comfort and 1AQ.

Enescu, Diana. "A review of thermal comfort models and indicators for indoor
environments." Renewable and Sustainable Energy Reviews 79 (2017): 1353-1379.

Table 7 (continued)
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Wei, Wenjuan, Olivier Ramalho, Laeticia Malingre, Sutharsini Sivanantham, John C. Little, and
Corinne Mandin. "Machine learning and statistical models for predicting indoor air quality.” Indoor
Air 29, no. 5 (2019): 704-726.

Table 2 Summary of IAQ prediction studies using artificial neural networks

43

a5

45

47

Data

BASE study: 100 of-
fice buildings from
10 geographic/
climatic regions

Daily average
values in S subway
station, Seoul,
Korea. March 1,
2007-luly 13,
2008

BASE study: 100 of-
fice buildings from
10 geographic/
climatic regions

8 apartments from
four bedrooms and
=ix living rooms
in an apartment
building located in
Kuopio, Finland.
May-October
2011

150 workdays in
Beijing campus,
China. December

23, 2013-May 9,
2014

500 Latin-
Hypercube sam-
ples of the results
predicted by the
CONTAM model

Three buildings
measured in
2010-2011

The measurements
were taken in
each site for three
consecutive days
during school
hours

Data Indoor
transformation type
Office
No Subway
station
No Office
No Apartment
Mo Office
No Dwelling
Mo Office
and
shop
No School

Pre-
analysis

MNone

PLS

MNone

None

Mone

Sensitivity
analysis

Mone

Stepwise

regression

Network

Feed-for-
ward

back-prop-

agation
network

Recurrent
neural
network

Feed-for-
ward

back-prop-

agation
network

Multilayer
percep-
tron
neural
network

Forward
network

Cascade
forward

network

Feed-for-
ward
time-delay
neural
network

Feed-for-
ward
back-prop-
agation
network

Inputs

Indoor TVOC, formal-
dehyde, CO, PM, .,
airborne fungi and
bacteria, tempera-
ture, relative humid-
ity, light, and noise

Indoor PM,  and
PM, of the day be-
fore, current indoor
NCr

®

Indoor temperature,
relative humidity, air
velocity, CO,, TVOC,
formaldehyde, PM, 5,
airborne fungi and
bacteria

Indoor temperature
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Research articles on machine learning application for indoor climate control

This research article explains extensively on sensor network deployment, data collection, and
learning model development. For a period of five months, the resulting learning-based
temperature preference control (LTPC) was applied to a cooling system of an office space
under real-world conditions. The experimental results indicate that occupant preferences in the
individual rooms differ from each other in both time horizon and temperature levels. The results
report energy savings of between 4% and 25% as compared to static temperature setpoints at
the low values of preferred temperature ranges.

Peng, Yuzhen, Zoltan Nagy, and Arno Schliter. "Temperature-preference learning with neural
networks for occupant-centric building indoor climate controls." Building and Environment 154
(2019): 296-308.

Our review study only focuses on environmental parameters, however much research collected
physiological data and used them to predict thermal comfort/IAQ. For example:

This paper proposes a personal TSI prediction method termed as the enhanced Predicted
Thermal State (ePTS) method by sensing physiological parameters namely, hand skin
temperature and pulse rate, along with the ambient air temperature. The ePTS method achieves
the highest accuracy at over 97%, outperforming the PTS model (82%), and other physiology
based methods (82%—-94%).

Chaudhuri, Tanaya, Yeng Chai Soh, Hua Li, and Lihua Xie. "Machine learning driven personal
comfort prediction by wearable sensing of pulse rate and skin temperature." Building and
Environment 170 (2020): 106615.

Using combined skin temperatures from different body segments can improve the model to over
90% accuracy. Results show that three skin locations contained enough information for
classification and more would cause the curse of dimensionality.

Dai, Changzhi, Hui Zhang, Edward Arens, and Zhiwei Lian. "Machine learning approaches to
predict thermal demands using skin temperatures: Steady-state conditions." Building and
Environment 114 (2017): 1-10.
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Fig. The controlling concept of SVM classifier based on skin temperature.

Machine learning-based electroencephalogram (EEG) pattern recognition methods as feedback
mechanisms were investigated. Results showed that EEG theta band (4—8 Hz) correlated with
subjective perceptions, and EEG alpha band (8—13 Hz) correlated with task performance. These
EEG indices could be utilized as more objective metrics in addition to questionnaire and task-
based metrics. For the machine learning-based EEG pattern recognition methods, the linear
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discriminant analysis (LDA) and support vector machine (SVM) classifiers can classify mental
states under different indoor air quality conditions with high accuracy.

Shan, Xin, En-Hua Yang, Jin Zhou, and Victor WC Chang. "Neural-signal electroencephalogram
(EEG) methods to improve human-building interaction under different indoor air quality." Energy
and Buildings 197 (2019): 188-195.

Adust rdoce ak galty
+  verdlation tale

Impact of ndoor ar
quaiity on oocupant

Recoed and varmmit EEG
sigral 1o compulnr

EEG cota arabyms:

+ Trela band and alpha bang

+ Nachine maming-tased EEG
pattem recogniton and
classfication

Fig. Machine learning-based EEG pattern recognition methods as real-time feedback
mechanisms have good potential to improve the human-building interaction
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Carbon Neutrality and Energy Models

Since President Amy Gutman first committed the University of Pennsylvania to the American College
and University Presidents Climate Commitment (ACUPCC) in 2007, annual carbon footprints have
shown that the vast majority of our greenhouse gas emissions are the result of energy consumption in the
built environment. Early plans to achieve carbon neutrality focused on reducing energy consumption in
the built environment through projects such as recommissioning systems, renovating buildings to improve
the envelope, or efficiency gains through equipment replacement. However, there was initially little to no
submetering of steam or chilled water consumption at the building level which limited the ability to
accurately gauge the true potential for reduction in the built environment through those measures.

The following sections describe how building level energy consumption data has been acquired and
utilized through three phases corresponding to iterations of the University’s five-year plan towards carbon
neutrality. From an energy modeling perspective, the focus of each phase shifted from data acquisition to
data-driven black box models to low-order white box models in order to best utilize the data available to
us to identify the potential for reductions in the built environment. As the construction and development
of both white and black box models has been covered in other modules, the discussion will center on how
these tools were applied to a real-world scenario to achieve actionable results.

Climate Action Plan |

The first Climate Action Plan (CAP, 2009) was released in 2009 was intended to provide a framework for
how the University would achieve carbon neutrality by 2042. A centerpiece of the plan was a chart
showing the historical carbon footprint for the University through to the current year, FY09. Beyond
FYO09 historical data is replaced by a wedge diagram that projects the FY09 carbon footprint through to
FY42. A baseline was calculated by assuming that historical growth would continue. The goal of
neutrality by 2042 was envisioned to be achievable primarily through a series of programs that would
rightly be focused on the built environment.
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Figure 1- Wedge Diagram for CAP1



Alex Waegel

A significant hinderance to this effort was the lack of actual data on the energy performance of most
individual buildings on campus. While some limited submetering existed, for the most part the only way
to capture the steam and chilled water usage was at the campus level. Without this data at the building
level, it was not possible to link the goals for reductions laid out in the Climate Action Plan to specific
renovation and recommissioning projects in University properties. Aware of this deficit, the University
began to install meters for steam and chilled water in the majority of the buildings that are connected to
those campus level loops. It was a process that took several years and was not completed until 2014,

The timing of the initial meter data was such that it coincided with the preparation for the second iteration
of the 5-year Climate Action Plan. Unlike before it was now possible to consider the energy consumption
of individual buildings. Unfortunately, though the meter installation was largely complete by this
juncture, there was a minimal historical record for most of those sensors. Further, the sensors were subject
to a calibration period during which the returned data was unreliable. Despite this, an annual energy
profile was created for all metered buildings by combining actual meter data, where it was available, with
estimates generated by a very simple low-order white box model to fill in any gaps.

This allowed for each building’s energy consumption to be compared against benchmarks for its building
type to gauge its overall performance and estimate potential reductions. This analysis showed that the first
Carbon Action Plan had likely overestimated the potential for achieving energy reductions in the built
environment by not considering the overlapping impacts of different effects and the limits of reductions
that could be achieved through renovation and recommissioning. It also showed the limits of the data that
was being acquired in its raw form. While in this iteration the targets are refined, in that buildings that
seem to be higher energy consumers can be investigated, the data itself is messy and does not provide
insight into specific actions that could be taken to address the poor performance. It was clear that a deeper
understanding of energy consumption at the building level would be required to provide actionable
information.

BPAT+ Normative Model

A very simple white box model that was based on same ISO framework as SimPyBuild. This model only
considered a single zone, envelope areas, materials, orientations, system types, plug-loads, light-loads,
and schedules. The model was used to estimate energy consumption for unmetered buildings, but outputs
could not be evaluated against metered consumption to verify accuracy so uses were limited.

Climate Action Plan 2

Drawing on the new meter data for steam and chilled water use at the building level, Climate Action Plan
2.0 (CAP2) was developed for FY14-FY19 was able to reevaluate the generic proposals made in CAP1 to
determine what potential effect they may have on the actual building stock at the University. Further, one
of the initiatives from CAP1 had led to a series of renovation and lighting projects under a program called
the Century Bond which allowed better evaluation of the costs and energy reductions associated with
these types of renovations. This data confirmed what had been previously suspected, that there were
fewer overall reductions possible in the built environment than had been assumed in CAP1, but also that
pursuing the deepest of those reductions would carry a steep price tag.

By basing CAP2 on the proposals of CAP1, the new data on building energy use, and the costs and
impacts of the projects being explored under the Century Bond it is clear how significant the over-
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estimates of CAP1 were regarding the potential for carbon reductions in the built environment. While this
made it apparent that alternative means of achieving neutrality were necessary it also highlighted that
only a fraction of the potential reductions in the built environment were being addressed by the projects
proposed under the Century Bond. A significant task remaining if those projected reductions were to be
realized would be to thoroughly evaluate the building stock and to identify the actual projects that could
be undertaken in the worst performers to reduce energy consumption on a scale comparable to that seen in

the Century Bond.
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Figure 2- Wedge diagram for CAP2

The newly acquired meter data provided the most promising avenue to explore this question but several
issues remained with the data itself, primarily that long spans of data from individual meters was
frequently missing or had been returned from a meter prior to calibration. In order to clean the data,
values for the faulty or missing data would need to be estimated and inserted. To this end a data-driven
black box model was created that models the relationship each building has between its energy electric,
steam, and chilled water consumption and external variables including weather conditions and the date.

In addition to cleaning the raw meter data and allowing for better evaluation of the scale of energy
consumption between buildings, the black box model would also be utilized for two further analyses that
would further the goal of identifying potential reductions in the built environment: 1) feature importance
analysis to indicate the external variables to which energy consumption in a building is sensitive and 2)

using the model to identify buildings whose energy performance has declined compared to what would be
predicted based on prior observations correlating energy use to external variables.

Black Box Model

This model uses a random forest regressor to predict the energy consumption of a individual building for
electricity, steam, and chilled water. (Braham et al, 2016) Other machine learning models were
considered and evaluated, but this configuration consistently yielded more accurate results. (Amasyali,
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2018; Bordeau, 2019, Wang, 2017) The attributes used to train this model and for predictions are month,
hour, temperature, relative humidity, wind, precipitation, cloud cover, solar irradiance, and snowfall. The
energy meter data is received in 15-minute increments, but these are aggregated to hourly values as that is
the finest granularity available for the weather data that was purchased.

The black box model aides the analysis of University buildings in two ways. Firstly, it takes the meter
data, which is often messy or incomplete, and interpolates a clean data set for each year using the
predictions of the model. This increases confidence in the data that is being returned by the meters and
allows for the aggregation of the data into larger blocks of time so that buildings absolute consumption
can be determined on a monthly or annual basis. These aggregated figures allow for the traditional
methods of evaluating the energy performance of a building: normalization and benchmarking using the
EUI (annual energy / area). The EUIs and benchmarks allow for a direct comparison of similar types of
buildings accounting for their scale and also gives an indication of what buildings of each type could be
capable of achieving in terms of efficiency.

Secondly, once trained the model provides a feature importance analysis. This result shows the relative
level of impact that each of the external variable features had on the predicted values from the model.
Thus, one might be able to say that a particular building’s steam consumption is highly sensitive to just
temperature while another’s might be sensitive to both wind and temperature. While this analysis does not
spell out the specific issue with the building, it does provide insight into what might be occurring within
the building to yield those results and suggest starting points for further investigation.

Black Box Model Data Cleaning Pipeline:
1. Obtain 15-min meter data for individual buildings from Facilities and Real-Estate Services
Obtain 1-hr weather data from a commercial vendor for the corresponding timeframe
Aggregate 15-min meter data to 1-hr increments to match weather data

2

3

4. Flag any missing values in the meter data

5. Flag any outlier values in the meter data using double median absolute deviation outlier detection
6

Create a data frame that joins the trusted meter data (unflagged) with the purchased weather data
on the date and the hour

7. Train a random forest regressor model on the joined data frame for each energy type and building
which yields a trained model and a feature importance analysis

8. Use the trained random forest model to predict all values flagged as missing or as outliers and
return a copy of the original data frame with the flagged 