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Introduction 
Architects use multiple kinds of models to inform multiple stages their work. These include physical 
models, full-size and scaled, analytical, mathematical models, and computational models, commonly 
called simulation (Weisberg 2013). 

In our terminology, white box models are deterministic, physics-based models solved with numerical 
techniques. They are widely used in the design and analysis of buildings. Black box models are stochastic 
models analyzed with statistical and machine-learning techniques and are most commonly used for the 
analysis of limited data streams for example from thermostats or meters. Gray box models combine a 
deterministic model with factors to account for the stochasticity of data and are solved with a variety of 
techniques.  

This paper will briefly review the use of white and black models, which are explored in more detail in the 
sections by Ravi Srinivasan, Pengyuan Shen, and Nancy Ma. The body of the paper will review gray-box 
methods as they have been applied to buildings 

White Box Models 
White box models are deterministic, physics-based models solved with numerical techniques. They are 
widely used in the design and analysis of buildings. These are commonly divided into categories by level 
of complexity: single zone, multiple zone, and computational fluid dynamic models (CFD). The building 
physics for building energy modelling has been well established since the early 20th century, so the 
limitation has been computational power and efficiency. A variety of techniques were employed in 
manual calculations, but with the advent of ready computational power and the increased urgency of the 
energy crisis in the 1970s, the heat balance method became the dominant approach. For a more detailed 
history of these methods, see (Oh and Haberl 2016) and (Malkawi and Augenbroe 2004). 

The dominant whole-building, multi-zone model at present is EnergyPlus, which has been developed and 
supported by the Department of Energy (U.S. DOE 2020), who provide the computational engine used by 
many different 3rd party interfaces. EnergyPlus is used by many different kinds of users for many different 
kinds of purposes from architectural and engineering design to code compliance, policy analysis, 
research, and measurement and verification. Its strength is its comprehensive nature, allowing the 
evaluation of small variations on almost any component or condition. The challenge is its complexity, 
which becomes especially evident when it is used to model the performance of an existing building, in 
which the process of calibrating the model can be time-consuming and uncertain. Simplified or low-order 
white-box models make clearer what causes their behavior and are much easier to calibrate (Shen, 
Braham, and Yi 2018) (ISO 52016-1 2017). 
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Figure 1. Genealogy chart for whole building, white-box simulation programs (Sukoon 2016) 
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Black Box Models 
Black box models are stochastic models analyzed with statistical and machine-learning techniques and for 
building energy analysis are most commonly used for the analysis of limited data streams, for example 
from thermostats or utility meters. Machine learning techniques can also be used to optimize or calibrate 
white box models. 

Gray Box Models 
Gray box models combine a deterministic model with factors to account for the stochasticity of data and 
are solved with a variety of techniques. As Kissock et al explained, “In the building energy community, 
models derived from measured energy use are called ‘inverse’ models. The term ‘inverse’ differentiates 
them from ‘forward’ models in which building energy use is predicted from engineering principles 
(Kissock, Haberl, and Claridge 2003, 2002).” Inverse methods are also called “estimation and system 
identification” and are used to identify models that provide a good fit to data and whose parameters also 
correlate to some physical aspect of the building (Rabl 1988).  

Correlations between outdoor temperature and energy use have been in use since the early twentieth 
century, initially used to time the delivery of fuels to homes, and correlation parameter was indication of 
the temperature driven heat loss of the building (1906). Inverse or gray-box methods were intensely 
explored in the 1970s, inspired by the energy crisis and the desire to accurately determine energy 
consumption and savings. They can be broadly divided into steady-state and dynamic models. 

Steady State Models 
Steady-state models are simpler and are generally employed with the average daily, monthly, or yearly 
data that is more commonly available. 

Princeton CES: Twin Rivers Program 
Among the earliest studies of gray box modelling emerged from the Center for Environmental Studies at 
Princeton University, which had been engaged in 1972 by the newly formed Energy Research and 
Development Administration “to document, to model, and to learn how to modify the amount of energy 
used in homes (Socolow 1976).” Their focus was on winter heating, which was the largest residential use 
of energy. The monitored a group of 48 identical rowhouses in Twin Rivers, New Jersey and in the 
process developed or refined many of the auditing techniques still used in energy analysis today. Simple 
modelling was readily adopted, because as Socolow explained, “Winter gas consumption is strongly 
predicted by a linear relation involving one single independent variable: average outside temperature.” 
They began their analysis with the simplest model linearly relating gas consumption to the outside 
temperature and a reference temperature, which is now commonly called the balance point and represents 
the temperature at which the furnace needs to turn on. 

𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐵𝐵(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅 𝑇𝑇𝑅𝑅𝐶𝐶𝐶𝐶.− 𝑂𝑂𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶𝑂𝑂𝑅𝑅 𝑇𝑇𝑅𝑅𝐶𝐶𝐶𝐶. ) 

They obtained good fit of gas consumption with temperature over periods of months, but for individual 
houses they discovered many variations attributable to differences in orientation (sun and wind), to 
differences in construction affecting heat loss and air infiltration, and differences in occupancy and 
operation. The team devoted considerable effort to identifying the additional independent variables that 
could be measured and could explain the variations. They focused on solar gains, internal electric heat 
gains, and wind velocity applied in a sequence of increasingly complex models and more detailed data 
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gathering. 

Certainly, the models in Chapter IV are an improvement on degree-day models with fixed 
reference temperature. But it must be possible to advance the state of the art further, while 
sacrificing only a little of the simplicity and economy of the current models. It remains our 
conviction that the way to further progress is not by the back door of elaborate, costly, and 
highly deterministic computer models drawn from the world of office buildings with fixed 
usage patterns, that track the weather hour by hour through the year. Rather, it may well lie in 
the direction of identifying those few parameters that capture the gross features of the energy 
balance of a house (its "signature") and then finding simple field approaches to measure their 
numerical values (Socolow 1976).  

The use of meaningful signatures remains a popular approach and is widely used in government programs 
and businesses focused on energy reduction. Energy consumption normalized per unit area (kBTU/sf and 
kWh/m2) is widely used as benchmarking and improvement metric, while two of what we might  call 
“challenge” measures—air infiltration rate under pressure and cool down time—provide valuable 
indicators without detailed modelling. 

PRISM: Variable-Base Degree-Day Models 
Through the early 1980s, the Princeton group continued to develop simple methods that could be applied 
with commonly available data. They refined the use of a “degree-day” method that used records of daily 
energy consumption and average daily temperatures, with which the numbers of degree-days of difference 
from a reference temperature could be calculated. They designated the method PRinceton Scorekeeping 
Method (PRISM) and it was widely used as a benchmarking tool and to evaluate the effectiveness of 
energy conservation measures in heating dominated buildings. It was subsequently applied to commercial 
buildings, with some limited success. It is called a variable-base method because it relies on a best-fit 
estimate of the reference temperature, τ: 

𝜏𝜏 =
𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶𝑅𝑅𝐺𝐺𝐺𝐺
 

In effect, it divides energy use into two categories, heating and everything else, fitting a line to the heating 
portion of the usage and assuming that everything else is constant through the year. As Fels observed, 
“for climates in which the energy used for cooling rather than heating dominates, and for houses with a 
large solar component in their design, more research is needed (Fels 1986).” Moreover, as Kissock et al 
argued, the “linear two-parameter regression models fail to capture the non-linear relationship 
between heating and cooling energy use and ambient temperature caused by system effects, such as 
VAV control, or latent loads (Kissock, Reddy, and Claridge 1998).”  

Change Point Models: Inverse Modelling Toolkit (IMT) 
Better results were obtained by using models with more parameters, fitting lines to portions of the data 
and determining the “change point” between the behaviors iteratively. These models were sufficiently 
useful for more complex buildings that ASHRAE commissioned an “Inverse Modelling Toolkit” from 
Kissock, Haberl, and Claridge, which was published with software in 2002 (Kissock, Haberl, and 
Claridge 2003). The three-, four-, and five-parameter models were able to capture the energy 
consumption behavior of buildings with more complex systems with variable or non-linear components. 
The method was developed for daily temperature and energy measurements. 
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Figure 2. Change Point Models. Top row, 2 parameter heating or cooling, second row, 3 parameter heating and 
cooling, third row, 4 parameter, heating and cooling, and bottom row, 5 parameter, heating and cooling (Kissock et 
al, 2002) 

FirstView 
FirstView has similar ambitions to the Inverse Modelling Toolkit (IMT), which is to provide performance 
assessment and analysis of buildings using readily available data. Beginning in the early 1990s, Howard 
Reichmuth began working with monthly average temperatures and monthly energy use, which is regularly 
reported in utility billing, so required no special metering. Unlike the regression techniques in IMT, it 
uses a variety of assumptions about characteristic heat loads and gains to build a physics-based model that 
is fit to the data. It is effectively an elaboration of the degree-day “bin methods” that correlated monthly 
temperature distributions to monthly energy, and also draws on the load breakdowns revealed with hourly 
simulation models. Reichmuth began producing “Howdy charts” of discrete energy gains and losses 
showing the patterns that were eventually designated as energy signatures (White and Reichmuth 1996).  

    
Figure 3. Howdy models of monthly energy data (Reichmuth 1996) 



William Braham 
 

 
 

The method is similar to the calibration of low-order white-box models, adjusting a limited set of building 
parameters to fit the model to the data. The impressive aspect of the method is that good fits have been 
obtained with monthly data for a large set of commercial buildings, mostly office buildings (Robison and 
Reichmuth 2001). The use of analog building parameters also facilitates recommendations for the 
improvement of energy performance. 

 Beginning in the 2000s, the method was adopted by the New Building Institute (NBI), who were able to 
validate it against a larger pool of building and support its further refinement (Reichmuth and Turner 
2010). NBI is actively using the tool and have been promoting it to EPA for use with the EnergyStar tool. 

  
Figure 4. FirstView, equivalent analog building parameters and analysis (Reichmuth 2010) 

Dynamic Models 
Inverse models become dynamic with the additional of some measure of internal heat storage. As Rabl 
observed, “there are many situations where dynamic models are preferable or required: warmup and 
cooldown; peak loads; rapid monitoring; diagnostics; and optimal control (1988).” Dynamic models can 
also incorporate more heat transfer pathways and methods of solution (linear and non-linear), facilitating 
the identification of suitable models, but increasing the complexity and computational intensity.  

The experiments with different dynamic models have revealed two kinds of issues—building parameters 
that vary through time and correlation between variables that are not entirely independent. Principle 
among the varying parameters are the air exchange rate and the admittance of solar radiation. A parameter 
that can be problematic in drier climates is the difference between the temperatures of air, sky, and 
ground, which can have quite different spatial and temporal patterns.  

This review will focus on the different models that have been tested, with some discussion of the methods 
of solution. There is also a difference in the literature between gray-box models that are tested against the 
results from complex white box models, on the argument that they have no noise, so are better suited to 
evaluate the models themself. That is in contrast to models tested against measured data from real 
buildings, which have to account for the noisiness of the real world, including environmental and building 
parameter variation, as well as the noise inherent in measurement and data collection. 

Thermal Time Constant 
Principle among the dynamic properties of a building is the thermal time constant, which is a measure of 
the rate at which a building or thermal system warms up or cools down. Even with all the focus on 
insulation values in construction, early researchers like Andreas Bugge considered it one of the 
fundamental characteristics of a building (Bugge 1924). He recognized that it interacted in ways that 
complemented insulation values and would be of importance for understanding the effect of variable heat 
sources, such as the sun. That instinct was confirmed by the solar researchers of the 1940s and 1970s, 
who devoted a great deal of time to the incorporation of thermal mass in interior construction and learning 
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to determine its effects  (Barber 2016, Balcomb 1982). 

Figure 5. Cool down tests for Trondheim test houses (Bugge 1924) 

In real construction, there are multiple time constants within a building and thermal properties are 
distributed, but for lumped-parameter, RC models there is a thermal time constant that typically forms 
one of the characteristic parameters of the model and its solutions.  

The simplest example comes from Newtons law of cooling, which applies to the cooling of a thermal 
mass by some linear from of heat exchange that is proportional to the temperature difference. That 
linearity is generally true for forced convection, but can vary with buoyancy driven convection and only 
applies for small temperature differences in radiant exchange. The basic heat balance expression is: 

 

𝝆𝝆𝑪𝑪𝒑𝒑𝑽𝑽
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒉𝒉𝒉𝒉(𝒅𝒅(𝒅𝒅) − 𝒅𝒅𝒂𝒂) 
Where: 
ρ  = Density, kg/m3 
Cp  = Specific Heat, J/kg ºC 
V  = Volume, m3 
ρCpV = Thermal mass, J/ºC 
h  = Convection heat transfer coefficient (W/m2·ºC) 
A  = Heat transfer surface area (m2) 
T(t)  = Temperature of the solid (ºC) 
Ta  = Temperature of the air surrounding the surface (ºC) 
 
The solution to the differential equation has the following solution expressed as a function of the time 
constant: 
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𝒅𝒅(𝒅𝒅) = 𝒅𝒅𝒂𝒂 + (𝒅𝒅𝟎𝟎 − 𝒅𝒅𝒂𝒂)𝒆𝒆−
𝒅𝒅
𝝉𝝉 

 
Where the time constant, 𝝉𝝉, is defined as the ratio between the thermal mass and the temperature 
dependent rate of heat loss, which has the units of time. The time constant is the time it takes the mass to 
cool off by 1/e in temperature. 
 

𝝉𝝉 =
𝝆𝝆𝑪𝑪𝒑𝒑𝑽𝑽
𝒉𝒉𝒉𝒉𝒔𝒔

 

 
Taking the simple example of a masonry brick with an initial temperature of 50 C in a environment with a 
temperature of 20 C, the charts in Figure 6 show the cool down curves for time constants of 3 and 9 hours 
(very different shapes and sizes of brick!). 

   
Figure 6. Cool down curves for bricks with different thermal time constants, 3 hr on the left and 9 hour on the right 

Equivalent Thermal Parameters 
The first of the dynamic gray-box or inverse modelling techniques developed in the Twin Rivers study 
was reported in Robert Sonderegger’s dissertation (1977). He tested a variety of simple models, whose 
distinguishing feather was the inclusion of thermal storage elements. In the model that was most 
successful with the Twin Rivers townhouses, he also included a constant temperature “clamp” to account 
for the effect of the basement. Figure 2. The model is expressed in terms of measurable temperatures and 
energy inputs, and solved for interior temperature over time. 

 Using algebraic manipulation, he was able to reduce the heat balance to a single difference equation that 
could be used for linear regression.  

 
Where V = temperature, H = lossiness, A = window area, S = solar flux, C = thermal mass, E+P+L are 
energy inputs 

He obtained good fit with the model, and by precisely determining the heat gains (E+P+L) using electric 
heaters, he was able to solve for the “equivalent thermal parameters” of the building. 
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Figure 7. Equivalent RC model of Twin Rivers Townhouse, Sonderegger, 1977 

The model and its solution also provided a measure for the thermal time constant of the whole system. 

𝝉𝝉 = 𝑪𝑪(
𝟏𝟏
𝑯𝑯𝑯𝑯

+
𝟏𝟏

𝑯𝑯 + 𝑯𝑯𝑪𝑪
)  

For the Twin River Townhouse they were measuring, the time constant was 6.8 hours. The time constant 
also emphasizes the point that the thermal behavior of buildings is not the function of a single property, 
but of their relation in the building as a thermal system. As Bugge’s chart illustrated, you can achieve the 
same cool down time with massive construction lightly insulation and highly insulated, but lightweight 
construction. 

Enerplex 
After the Twin Rivers program, the CES group was involved in the design, construction, and monitoring 
of two commercial buildings called Energyplex. A number of inverse techniques were used on the data 
collected from these buildings, from multiple solution techniques for differential heat-balance equations, 
to the use of an auto-regressive moving average (ARMA) method that yielded time constants and 
admittances, but without estimation of physical parameters (Subbarao 1985). Two useful features 
revealed by dynamic methods are the characteristic time constant of the building and the effective thermal 
mass (Rabl 1988, Norford et al. 1986). 
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Figure 8. Summary of dynamic methods in the later 1980s (Rabl) 

Continuous Time Stochastic Models (CTSM) 
Beginning in the late 1980s, the mathematician Heinrich Madsen began working with a variety of 
colleagues to apply more sophisticated statistical techniques to the heat dynamics of buildings (Madsen 
1985). The focus was on accounting for the different forms of noise in time series data, so their projects 
were based on measured data from a variety of test buildings. In their first study (1983-1995), shown in 
Figure 7, they achieve very good fit of a 2R2C model. However, similar to the electric heaters introduced 
in Twin Rivers, they used an electric heater configured to produce heat in a white-noise pattern, which 
was explicitly independent of environmental factors (Madsen 1995). 

 
Figure 9. A 2R2C model of building (Madsen 1995) 

In a subsequent project, they tested a hierarchy of models of increasing complexity on data from their test 
building, using a likelihood ratio test to identify the best fit. The heat input was again not driven by a 
thermostat, but used a “pseudo-random binary sequence (PRBS)” to excite different frequencies of 
thermal response in the building and to make the variable independent of other environmental factors. 
They tested a total of 17 models that increased in complexity from a 1R1C model to 6R5C model that 
even includes the capacitance of the sensor and a resistance for its connection to the indoor air 
temperature (Bacher and Madsen 2011). The one that best fit the data was a 4R4C model that included a 
mass and resistance for the sensor and the heater, as well as mass for the air and for the building envelope. 
See Figure 8.  
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Figure 10. The simplest (top), most complex (bottom), and best fit (middle) of the RC models used in the CTSM study 
(Bacher 2011) 

Of course, there are multiple time constants in more complex models. As Bacher and Madsen described in 
the matrix formulation of their models “the estimates of the time constants, 𝝉𝝉𝒊𝒊 are calculated by the 
eigenvalues, 𝝀𝝀𝒊𝒊of the system matrix A, i.e., 𝝉𝝉𝒊𝒊 = 𝟏𝟏 − 𝟏𝟏

𝝀𝝀𝒊𝒊
  (Bacher and Madsen 2011).” These all have the 

same form of a ratio of thermal transmittance and thermal capacitance, and there is a time constant for 
each capacitor. The cool down time constant for the house would generally be that for the building mass, 
but this gets complicated in the models that separate the interior mass from the mass that is part of the 
exterior envelope. See Figure 11. 
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Figure 11. Thermal parameters, including time constant, for the 17 models tested by Bacher et al 

Control Model 
In a novel conference paper, McKinley and Alleyne combined an RC model of a building with a heat and 
moisture balance model of a simple HVAC system (McKinley and Alleyne 2008). They used data from a 
white-box, EnergyPlus model of a small commercial building, so there was no noise present in the data. 
They used a 4R2C thermal model and a standard optimization technique to achieve good fit. One 
interesting observation was about the choice of error function and the confounding of parameters. In their 
case they started by using the rms error of interior air, which confounded the heat gain through the 
envelope and through the windows, but when the switched to using the zone humidity ratio, they achieved 
much better results. It seems a very useful insight! 
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Figure 12. Thermal network model and zone control volume model (McKinley & Alleyne) 

Genetic Algorithm 
Wang and Shu developed a hybrid method for parameter estimate, using physical specifications to 
calculate the parameters of the 3R2C models of the envelope, but used inverse modelling of a 2R2C 
model for the internal mass, employing a genetic algorithm to optimize the fit to the data. They used the 
measured heat input to the building as the objective function, and achieve reasonable (though not perfect) 
results with the model. 

 

Bath Group 
Ramallo-González et al successfully tested lumped parameter models for heat transfer through building 
envelopes, getting good results with 3R2C models (Ramallo-González, Eames, and Coley 2013). In a 
subsequent study they tested a variety of whole building models against data for a diverse selection of 
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residential buildings, settling on a simple, 2R1C model, which gave the best fit across the population. 
They used data for 1,000 simulations of 16 house types and 6 different types of actual buildings. Their 
goal was “to see if the restricted data gathered from advanced smart metres or similar devices might be 
used to form the basis of a dynamic thermal model of a building (Ramallo-González et al. 2018).” 

One peculiarity of their study was that after testing for fit to interior temperature data, their focus was on 
estimating heat transfer coefficients (HTC)of the buildings, which they compared to those calculated from 
the EnergyPlus simulations. The also used the fit models to test their sensitivity to missing heat gain data,  

They did achieve good results with the real buildings, that had some critical sensors added to increase 
precision, specifically: “Internal temperatures (in three locations per house), external temperature, 
electricity use, gas use (aggregated with DHW) and CO2 concentration were obtained at a resolution of 
5 minutes. Given the CO2 concentration, it was possible to produce an estimation of the air renewal.” 

 

 
Figure 13. Performance of Bath models of increasing complexity to reproduce time series of interior temperature. 
1R model not included (Ramallo-Gonzalez) 
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Figure 14. Eight RC models evaluated in Bath project. (Ramallo-Gonzalez) 
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Summary 
Relatively simple RC, gray-box models have been successfully applied to data form a variety of buildings 
for a variety of purposes. Their formulation and solution are driven by the building type, the particular 
data available, and the research question. The successful models range from 2R1C to 4R3C. 

There are many approaches used to the optimization, but for real data from real buildings the two most 
immediately promising methods seem to be CTSM and the genetic algorithm. 
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History of Building Simulation 
The main development of building simulation tools starts in the 1970s and was further developed in the 
’80s and ’90s. During the '90s, most functions were completed and validated. Since the late ’90s and the 
beginning of the 2000s, tools were developed to share code, files, and integrate them into the design tools. 
In the early 10s, several cloud-based tools were introduced to the market, and more tools were integrated 
into CAD tools. 

Reference 
Augenbroe, Godfried (2011). The role of simulation in performance based design. In: J. Hensen and R. 

Lamberts (eds), Building Performance Simulation for Design and Operation. Spon Press. 
Ali Malkawi and Godfried Augenbroe (editors), Advanced Building Simulation. SPON Press, Taylor and 

Francis group, 2004. ISBN 0-415-32122-0 
J.L.M. Hensen, Towards more effective use of building performance simulation in design, Van Leeuwen, 

J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in 
Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-
6814-155-4, p. 291-306 

 

Currently, the issue of using building simulation tools is not that there are too few tools, but instead too 
many. This brings the problem of selecting the right tools to use. Currently, available tools can be found 
in the Building Energy Software Tools webpage (https://www.buildingenergysoftwaretools.com/). 
Crawley (2006) discusses the capabilities of different building energy simulation tools and its shows 
limits and functions used in different tools.   

Reference 
Crawley, Drury B., Hand, Jon W., Kummert, Michael, and Griffith, Brent T. Contrasting the capabilities 

of building energy performance simulation programs. United States: N. p., 2008. Web. 
doi:10.1016/j.buildenv.2006.10.027. 

Yi, Yun Kyu, “Building Performance and Computational Simulation,” in The Design and Construction of 
High Performance Homes Building Envelopes, Renewable Energy and Integrated Practice, ed. 
Franca Trubiano, (Abingdon, UK: Routledge, 2012): pp. 163-177 

White Box Models for Whole Building Energy Use 
White box models for whole-building energy use can be sub-divided into “milky white box” and “glass 
box.” The difference between the two can be identified by its accessibility to its core function. “Milky 
white boxes” are typically commercial tools that encapsulate its core engine. Because of this, it has 
difficulty accessing functions, where “glass box,” is an open-source where users can get access to the core 
engine which allows the user to test different configurations or new models. The benefit of the milky 
white box is that it is stable, and the outputs are more trustable. However, its benefits work against the 
users whose interests are in testing different models or algorithms to replace existing core functions.     

Since White box models are based on physics, their model was developed based on energy flow. This 
means the 1st step of the calculation process is using the heat balance model to find the cooling and 
heating load. This load is passed to the system and primary energy side to calculate whole-building 
energy use. This process was developed as modules in the tool that the system manager communicates 
between modules to calculate energy use. 
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Figure 1. EnergyPlus Internal elements (Getting Started with EnergyPlus, 2021) 

The building energy tools are dynamic and deterministic. This means that boundary conditions were set 
up at the initial stage and modules communicate each other accordingly based on time steps. The white 
model which is a physics-based model is sophisticated and able to understand the performance of building 
in-depth. However, its strongest benefit also works against its benefit. It is common to find simulation 
result shows a significant discrepancy with actual performance (Sokolowski and Catherine, 2011). DOE 
identified this discrepancy into two categories (DOE 2019). Variability and Uncertainty were identified as 
sources of differences between simulated and actual performance. 

Currently, several research projects are undergoing to improve the discrepancy between actual results and 
simulation results. The most significant effect on discrepancy is occupant behavior and a significant 
amount of literature can be found in recent years. Gaetani, Hoes, and Hansen (2016) summarized all 
papers related to occupant behavior modeling in Building energy modeling.    

For this reason, other modeling methods like a grey box or black box can be utilized to overcome the 
limitations of the white-box model. However, grey box or black box were depending on the data set to 
overcome the limitation of white-box modeling.  If the data set is missing, it is difficult to develop a black 
or grey box model and has to depend on the white-box model. This especially true when the building is in 
the design stage and no data is available. To overcome the limitation of missing data and discrepancy of 
white-box model result with actual usages, Judkoff (1988) suggested three methods for validation of the 
white box model (NREL, 2006) (Figure 2). 

Since other sections focused on the operation and management stage of building energy usage, this 
section focuses on the design stage and how the white-box model can be used. Among the three 
techniques in figure 2, in the design stage "comparative" method is most suitable to use. Since in the 
design stage, it is more important to understand the relative comparison of different design strategies than 
absolute truth results. The following chapter discusses some of the examples of different white-box 
models that are used to overcome the limitation.     
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Figure 2. Validation Techniques 

Reference 
Getting Started with EnergyPlus, accessible March 2021, 

https://www.energyplus.net/sites/default/files/docs/site_v8.3.0/GettingStarted/GettingStarted/inde
x.html 

Sokolowski, John A., and Catherine M. Banks. 2009. Principles of modeling and simulation: a 
multidisciplinary approach. Hoboken, N.J.: John Wiley.  

DOE, accessible March. 2021, https://www.energy.gov/sites/prod/files/2019/05/f62/bto-
peer%E2%80%932019-lbnl%E2%80%93empirical-validation.pdf       

Isabella Gaetani, Pieter-Jan Hoes, Jan L.M. Hensen, “Occupant behavior in building energy simulation: 
Towards a fit-for-purpose modeling strategy,” Energy and Buildings, Volume 121, 2016, 188-
204, https://doi.org/10.1016/j.enbuild.2016.03.038. 

Judkoff, R. (1988). Validation of Building Energy Analysis Simulation Programs at the Solar Energy 
Research Institute. Energy and Buildings, Vol. 10, No. 3, p. 235. Lausanne, Switzerland: Elsevier 
Sequoia.  

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140, accessable 
March 2021., https://www.nrel.gov/buildings/assets/pdfs/40360.pdf 

Integration with other models 
Here few examples of integration with other models are discussed, first section discusses how the 
building energy model can be integrated with the CFD (computational fluid dynamics) modeling to 
improve boundary conditions for energy simulation tools.  Second is the integration between the building 
energy model with the daylight model to improve the accuracy of the indoor daylight level. Lastly, 
discuss integrating the building energy model with two different models to speed up computation time 
that limits integrating two white-box models. 

 

Building energy model with CFD   
One of the major limits of building energy modeling is calculating airflow in buildings. Specifically, 

https://www.nrel.gov/buildings/assets/pdfs/40360.pdf
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convection thermal transfer is a difficult part of energy modeling. For that reason, several papers discuss 
indoor coupling between energy simulations and CFD. Here are some of the major publications in this 
area. 

Reference 
Clarke, JA, Dempster, WM, Negrão, CRO (1995) The Implementation of a Computational Fluid 

Dynamics Algorithm Within the ESP-r System. Glasgow: Energy system division, Univertsity of 
Strathclyde. 

Beausoleil-Morrison, I (2002) The adaptive conflation of computational fluid dynamics with whole-
building thermal simulation. Energy and Building 34: 857–871. 

Wang, L, Chen, Q (2007) Validation of a coupled multizone-CFD program for building airflow and 
contaminant transport simulation. HVAC&R Research 13(2): 267–281. 

Chen, Q, Lee, K, Mazumdar, S, et al. (2010) Ventilation performance prediction for buildings: Model 
assessment. Building and Environment 45: 295–303. 

Djunaedy, E, Hensen, JLM, Loomans, MGLC (2004c) On integration of CFD in building design. In: 
Proceedings of the PhD symposium modelling and simulation for environmental engineering (ed 
Hensen, JLM, Lain, M), 16 April, 53–60. 

Kong, Q, Feng, J, Yang, C, et al. (2017) Numerical simulation of a radiant floor cooling office bades on 
CFD-BES coupling and FEM. In: Proceedings of the 8th international conference on applied 
energy, Beijing, China, 8–11 October, 3577–3583.  

Yi, YK, Feng, N (2013) Dynamic integration between building energy simulation (BES) and 
computational fluid dynamics (CFD) simulation for building exterior surface. Building 
Simulation 6: 297–308. 

Rodríguez-Vázquez, Martin, Iván Hernández-Pérez, Jesus Xamán, Yvonne Chávez, Miguel Gijón-Rivera, 
and Juan M Belman-Flores. “Coupling Building Energy Simulation and Computational Fluid 
Dynamics: An Overview.” Journal of Building Physics 44, no. 2 (September 2020): 137–80. 
https://doi.org/10.1177/1744259120901840. 

Coupling with CFD and the building energy model extend to outdoor conditions, specifically site-specific 
conditions are one of the major discrepancies between actual vs. simulation. The following papers discuss 
coupling CFD and building simulation for outdoor conditions.  

Reference 
Liu, J, Heidarinejad, M, Gracik, S, et al. (2015) The impact of exterior surface convective heat transfer 

coefficients on the building energy consumption in urban neighborhoods with different plan area 
densities. Energy and Buildings 86: 449–463. 

Toparlar, T, Blockn, B, Maiheu, B, et al. (2018) Impact of urban microclimate on summertime building 
cooling demand: a parametric analysis for Antwerp, Belgium. Applied Energy 228: 852–872. 

Building energy model with Daylight model   
Electricity takes a significant portion of building energy usage and it is crucial to understand how daylight 
performs indoor space to estimate the reduction of energy usage by utilizing daylight. The current method 
built-in energy model is a simplified method, and several approaches were developed to compensate for 
the limitation of the current energy model. Here are some of the methods developed to overcome this 
limitation. 

Reference 
Denis Bourgeois, Christoph Reinhart, Iain Macdonald, Adding advanced behavioural models in whole 

building energy simulation: A study on the total energy impact of manual and automated lighting 
control, Energy and Buildings, 38, 7, 2006, doi.org/10.1016/j.enbuild.2006.03.002. 
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Janak, Milan. (1997). Coupling building energy and lighting simulation. 5th International IBPSA 
Conference. 

Yun Kyu Yi, Dynamic coupling between a Kriging-based daylight model and building energy model, 
Energy and Buildings, 128, 2016, 798-808, doi.org/10.1016/j.enbuild.2016.05.081 

Building energy model with two different models 
Even though integrating two white-box models improves the prediction of building energy use, the most 
significant limitation of integration is related computational time to simulate both white-box models. To 
overcome this limit, the black-box model can support reducing computational time with reasonable 
prediction. This method allows the use of the black-box model in the initial design stages where data is 
limited to the use black-box model. 

Reference 
Changyu Qiu, Yun Kyu Yi, Meng Wang, Hongxing Yang, Coupling an artificial neuron network 

daylighting model and building energy simulation for vacuum photovoltaic glazing, Applied 
Energy, 263, 2020, 114624, https://doi.org/10.1016/j.apenergy.2020.114624. 

Yi, Y. K., Tariq, A., Park, J., and Barakat, D., “Multi-Objective Optimization (MOO) of a Skylight Roof 
System for Structure Integrity, Daylight, and Material Cost,” Journal of Building Engineering. 34. 
Feb. 2021. https://doi.org/10.1016/j.jobe.2020.102056. 

Wang, B., Yi, Y. K, “Developing an Adapted UTCI (Universal Thermal Climate Index) for the Elderly 
Population in China’s Severe Cold Climate Region,” Sustainable Cities and Society. Accepted. 
https://doi.org/10.1016/j.scs.2021.102813.   

Recent tool development 
The building energy modeling tools are continuously developed and their capacity is updated, which 
makes it difficult to discuss the tools’ capacities since there will be a new update soon. For that reason, 
the section discusses each tool’s engine or base where it starts and summarizes its pros and cons of the 
current released version. 

The most popular commercial tools used in the industry can be divide by what type of engine it uses. 
Some commercial tools are run based on an open-source engine like EnergyPlus (https://energyplus.net/). 
Others like TRACE700 (https://www.trane.com/commercial/north-america/us/en/products-
systems/design-and-analysis-tools/trace-700.html), developed by Trane were built with an engine based 
on ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning). 

The greatest benefit of the open-source engine is data sharing and module insertion. The user can revise 
and add new components to the engine. The benefit of a closed-source engine is that it is verified and 
more reliable. However, with the rapid development of new technologies and new methods, open-source 
engines are more frequently mentioned in the market because of their ability to adapt to state-of-the-art 
technology. 

Some of the major open-source tools can be grouped to what engine it uses. The most dominant engine in 
the US market is EnergyPlus, another engine can be DOE-2 (https://doe2.com/). One of the popular 
EnergyPlus based tools is DesignBuilder (DB, https://designbuilder.co.uk/), which is a standalone tool 
that includes parts of Radiance (https://www.radiance-online.org/) and a simplified CFD model. DB has a 
relatively easy process that can be used to build complex geometry and an easy to create complex zoning. 
For DOE-2, eQuest (https://doe2.com/equest/index.html) is the most popular tool in the market. Since it 
was open-source for more than a decade, several practitioners still use the tool. 

https://doi.org/10.1016/j.apenergy.2020.114624
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Some of the building energy tools were integrated into CAD tools like Rhino 
(Grasshopper)(https://www.rhino3d.com/) or Dynamo (https://www.autodesk.com/products/dynamo-
studio/overview). These CAD tools use a graphic program interface that allows users to easily control 
geometry. Ladybug (https://www.ladybug.tools/), ClimateStudio (previously called Diva-for-Rhino, 
https://www.solemma.com/climatestudio), and OpenStudio SketchUp Plug-in 
(https://www.openstudio.net/) are three major building energy tools that embed into NURBS (Non-
Uniform Rational Basis Spline) CAD tools. The most beneficial things about these tools are that it makes 
it easy to test energy performances in the early design stage to find a better design solution. However, it is 
comparatively complicated for beginners to use and has the limitation of populating complex HVAC 
(Heating, ventilation, and air conditioning) systems and zoning. 

Another trend in building energy tools is web-based energy simulation tools. Sefaira 
(https://www.sketchup.com/products/sefaira), and cove.tool (https://www.cove.tools/), are the most well 
know tools as cloud-based simulation tools. The benefit of cloud-based simulation is fast and easy to use. 
However, tools have limited parameters that difficult to use for sophisticate or complex geometry. 

One of the tools frequently used by HVAC professions is TRACE700. TRACE700 has a closed-source 
engine, which is built by TRANE, a company expert in the HVAC system. However, TRACE700 will 
replace by TRACE3Dplus (https://www.trane.com/commercial/north-america/us/en/products-
systems/design-and-analysis-tools/trane-design-tools/trace-3d-plus.html) which is based on EnergyPlus.  
IES (https://www.iesve.com/software/building-energy-modeling), which is another tool that uses its 
engine. It has various engines and is integrated into one platform. 

Other well-known building energy simulation tools that are not frequently used in the US include esp-r, 
DeST, and WUFI Plus. The following references discuss in more detail on comparison between different 
simulation tools. 

Reference: 
Al Ka’bi, A.H. Comparison of energy simulation applications used in green building. Ann. Telecommun. 

75, 271–290 (2020). https://doi.org/10.1007/s12243-020-00771-6 
Jacobs, P, and Henderson, H. Fri . "State-of-the-Art Review Whole Building, Building Envelope, and 

HVAC Component and System Simulation and Design Tools". United States. 
Roth, Amir, and Reyna, Janet. Sun . "Innovations in Building Energy Modeling: Research and 

Development Opportunities for Emerging Technologies". United States. 
https://doi.org/10.2172/1710155. https://www.osti.gov/servlets/purl/1710155. 

Lee, Sang Hoon & Hong, Tianzhen & Piette, M. & Taylor-Lange, Sarah. (2015). Energy Retrofit 
Analysis Toolkits for Commercial Buildings: A Review. Energy. 10.1016/j.energy.2015.06.112. 

Summary 
The white box model is sophisticated and validates. It is the main reason why it is widely used in the 
field. However, its complexity and significant dependence on physical properties require careful attention. 
The study reviewed current methods and related papers that integrate different white-box models to 
improve its prediction.  As discussed, it is important to understand that the white-box model is not always 
applicable to any problems related to building energy use and it is requiring careful investigation to find 
the right model to use. 

https://doi.org/10.1007/s12243-020-00771-6
https://www.osti.gov/servlets/purl/1710155
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1. Building thermal modeling 

1.1. White (or forward), grey, and black box model for building simulation 
A large number of models of the static and dynamic approaches have been used in the 
presentation of the thermal behavior of buildings. It was proposed to classify the sets of these 
models into three categories, the white, the black and the grey boxes models. Depending on the 
static and dynamic approaches, some of the models have been very successful in describing the 
thermal behavior of large residential buildings. Others have been used to estimate the thermal-
energy demands or in the prediction of heat consumption and reducing energy consumption. 

References: 

Khan, M.E. and Farmeena, K. (2012) A Comparative Study of White Box, Black Box and Grey 
Box Testing Techniques. International Journal of Advanced Computer Science and 
Applications, 3, 12-15. 

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective 
Energy Management. Smart Grid and Renewable Energy: 95-112. 

1.2. What to model in building energy simulation? – occupancy behavior 
and building thermal behavior 

According to occupant control level, appliances driven loads can be categorized into two classes, 
responsive loads and unresponsive loads. Responsive loads includes plug loads, lighting loads, 
laundry and drying machines, dishwashers, cooking ranges，heating thermostats (loads), 
cooling thermostats (loads). Unresponsive loads includes refrigerator loads, freezer loads and 
stand-by loads. In regards to electric heaters, with a responsive thermostat which controls the 
output of the heater effectively and maintains a more consistent room temperature, the electric 
heaters models without a thermostat require closer monitoring by the customer, and therefore 
are associated with unresponsive loads. 
Another important analysis procedure of building energy simulation is the description of 
building thermal behavior by an energy balance model shown in Equation (1). Heating or 
cooling load can be predicted by this model, which is used for system and equipment selection. 
 

 
Qi – internal heat gain 
Qc – conduction heat gain or loss 
Qs – solar heat gain 
Qv – ventilation heat gain or loss 
Qe – evaporative heat loss 
∆𝑆𝑆− change in heat stored in the building 

References: 

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective 
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Energy Management. Smart Grid and Renewable Energy: 95-112. 
Singh, R. and Vyakaranam, B. (2012) Evaluation of Representative Smart Grid Investment 

Grant Project Technologies: Distributed Generation. PNNL, Richland. 
http://www.esc.gov.yk.ca/ 

Energy Solution Centre (2011) Easy$ Tip Sheets—Energy Advice Saving Yukoners Money. 
Energy Solution Centre Report, Whitehorse, 1-4. www.esc.gov.yk.ca 

1.3. Systems involved in building energy use simulation 
To maintain a comfortable environment, there have to be some systems to meet human 
requirements. Systems involved in building energy use include HVAC and domestic hot water 
system, lighting and plug-in system, and some other ultimate and special usage system. 

2. White box model 

White box testing is a test case design method that uses the control structure of the procedural 
design to derive test cases, which require a significant amount of expertise. To build the control 
structure, physical significance must be known to develop the theoretical basis. 

Reference: 

Khan, M.E. and Farmeena, K. (2012) A Comparative Study of White Box, Black Box and Grey 
Box Testing Techniques. International Journal of Advanced Computer Science and 
Applications, 3, 12-15. 

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective 
Energy Management. Smart Grid and Renewable Energy: 95-112. 

2.1. Static and dynamic thermal response of buildings 
In static conditions, the conduction heat transfer follows the Fourier Law, which states that the 
negative gradient of temperature and the time rate of heat transfer is proportional to the area at right 
angles of that gradient through which the heat flows. 
Due to thermal inertia of envelope, there exists delay and attenuation the heat flow through a 
real wall compared with a “zero-mass” wall of the same U-value. The greater thermal mass is, 
the more daily temperature swings dampen. 
 

2.2.1. Different equation types of white models 

2.2.2. Static conditions 
For static conditions, linear equations for conduction, convective heat transfer and solar energy 
received and a non-linear equation (Stefan-Boltzmann equation) for radiative heat transfer were 
considered. 

Linear equations:  

http://www.esc.gov.yk.ca/
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q : Heat transfer rate (W);  
L: Coefficient of static losses (W/˚C);   
T −Ta : Difference between indoor and outdoor temperature (˚C); 
As : Equivalent surface (m2);  
I : Solar energy received by a vertical wall (W/m2),  
ε : Depends by the state of variables measured at the beginning and end of the period 
observational (W) 
T2 −T1: Difference between the boundary and ambient temperature (˚C); 
h: Convective heat transfer coefficient (W/m2∙˚C) 
A: heat transfer area of the surface (m2). 

 

Non-linear equation:  

q : Emitted heat transfer rate (W);  
ε : Surface emissivity;  
σ : Stefan-Boltzmann constant ( 5.669×10−8m2K4 )  
A: Radiation surface (m2). 

2.2.3. Dynamic conditions 
For dynamic conditions, an ordinary differential equation can be used to analyze temperature 
variation with time as shown in the following equation. 
 

 
C: Thermal capacity (J/K), 
U: Overall heat transmission coefficient (W/m2K), 
t: time. 
To acquire the temporal-spatial temperature distribution, partial linear differential equations are 
utilized.  
 

 
u (x,t ) : Temperature at position x and time (t), 
α: Thermal diffusivity (mm2/s) - measures the rate of transfer of heat of a material from the hot 
end to the cold end. 

Reference: 

Christian, N., Dirk, J., Burhenne, S. and Florita, A. (2011) Modellbasierte Methoden für die 
Fehlererkennung und Optimierung im Gebäudebetrieb. Fraunhofer ISE, Technical Report 
0327410A-C, 1-276. 
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3. Black box model 

Black box testing treats the software as a “Black Box” – without any knowledge of internal 
working and it only examines the fundamental aspects of the system. In the black-box, the 
parameters are generally adjusted automatically in training procedure. Therefore, the 
relationship with physical fundamental principles is Implicit in black box models. 

Reference: 

Khan, M.E. and Farmeena, K. (2012) A Comparative Study of White Box, Black Box and Grey 
Box Testing Techniques. International Journal of Advanced Computer Science and 
Applications, 3, 12-15. 

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective 
Energy Management. Smart Grid and Renewable Energy: 95-112. 

 

3.1. Pros and cons of white and black box models 

3.1.1. White box: 
Pros: 
 Clear model internal structure 
 Extrapolation enabled (under various scenarios) 
 Physical meaning 
 Can be used for optimization 
Cons: 
 Need great amount of expertise 
 Hard to calibrate 
 Sometimes need great amount of computation 

3.1.2. Black box: 
Pros: 
 Calibrated while modeling 
 Less computation 
 Can be used for fault detection 
Cons: 
 Cannot be used for optimization 
 Internal structure unknown 
 Unable for extrapolation (extreme conditions or scenarios) 

4. Why low-order white box model? 

There are certain drawbacks in the white box model, which needs to be improved. 

4.1. Dynamic conduction heat transfer simulation in white box model 
In cooling load and energy calculation, building simulation and energy analysis, conduction 
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heat transfer is usually modeled as a one-dimensional, transient process with constant material 
properties. The simplified heat diffusion equation in Cartesian coordinates is shown in the first 
following equation. Since the first equation is a partial differential equation, the system is 
usually solved numerically, often by means of conduction transfer function methods. 

 

 
The method results in a simple linear equation that expresses the current heat flux in terms of 
the current temperature and temperature and heat flux histories. 

 
where q0 and qi are heat flux at exterior and interior surface, respectively. Xn, Yn and Zn are 
surface-to-surface exterior, cross and interior CTF coefficient, respectively. Tis and Tos are 
interior and exterior surface temperature, respectively. Nx, Ny and Nz are number of exterior, 
cross and interior CTF terms, respectively. φn is flux coefficient. Nφ is the number of flux 
history terms. The subscript θ represents the current time, and δ is time step. The zero subscript 
represents a current value. 

References: 

Incropera, F.P. and DeWitt, D.P. Introduction to heat transfer, 3rd ed. Wiley, New York, NY., 
1996. 

Chen Youming, et. al. (2006). Investigation of the Accuracy of Calculation Methods for 
Conduction Transfer Functions of Building Construction. ICEBO2006, Shenzhen, China. 

 

4.2. Two main methods to solve the equation 
 Numerical methods (TRNSYS): e.g., Direct root-finding algorithms, State space method 

(EnergyPlus) 
 Frequency domain methods (BLAST): e.g., Laplace transform… 
 Frequency domain regression methods 
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References: 

Chen Youming, et. al. (2006). Investigation of the Accuracy of Calculation Methods for 
Conduction Transfer Functions of Building Construction. ICEBO2006, Shenzhen, China 

Wang, S.,&Chen, Y.. (2003). Transient heat flow calculation for multilayer constructions using 
a frequency-domain regression method. Building and Environment, 38(1), 45-61. 

Harish, V.s.K.V. & Kumar, Arun. (2016). A review on modeling and simulation of building 
energy systems. Renewable and Sustainable Energy Reviews. 56. 1272-1292. 

4.2.1. State space method 
The basic state space system is defined by the following linear matrix equations: 

 
where x is a vector of state variables, u is a vector of inputs, y is the output vector, t is time, and 
A, B, C, and D are coefficient matrices. 
Through the use of matrix algebra, the vector of state variables (x) can be eliminated from the 
system of equations, and the output vector (y) can be related directly to the input vector (u): 

 

 
where T1, T2, ..., Tn-1, Tn are the finite difference nodal temperatures, n is the number of nodes, 
Ti and To are the interior and exterior environmental temperatures, and and are the heat fluxes. 

References: 

US Department Of Energy. (2010). EnergyPlus Engineering Reference: The Reference to 
EnergyPlus Calculations. 

4.2.2. Frequency domain methods (FDR): 
In FDR method, the frequency characteristics of the total transmission matrix are calculated 
within the frequencyrange concerned firstly. Then, a set of linear equations is solved to yield a 
simple polynomial function. Finally, the response factors are obtained simply by applying 
inverse Laplace transforms or Z-transforms on the polynomial s-transfer function.  
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References: 

Wang, S.,&Chen, Y.. (2003). Transient heat flow calculation for multilayer constructions using 
a frequency-domain regression method. Building and Environment, 38(1), 45-61. 

4.2.3. Frequency domain vs. State space 
Through the use of relatively simple matrix algebra, the state space variables (nodal 
temperatures) can be eliminated to arrive at a matrix equation that gives the outputs (heat fluxes) 
as a function of the inputs (environmental temperatures) only. This eliminates the need to solve 
for roots in the Laplace domain. 
The resulting matrix form has more physical meaning than complex functions required by the 
Laplace transform method. 
For an adequate number of nodes the state space method computed a heat flux at the surface of 
a simple one layer slab within 1% of the analytical solution. 

References: 

Chen Youming, et. al. (2006). Investigation of the Accuracy of Calculation Methods for 
Conduction Transfer Functions of Building Construction. ICEBO2006, Shenzhen, China. 

Wang, S.,&Chen, Y.. (2003). Transient heat flow calculation for multilayer constructions using 
a frequency-domain regression method. Building and Environment, 38(1), 45-61. 
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4.2.4 Real multi-zone building can be complicated (than the calculations 
of wall components) 

 
When the model gets more complicated, the solving of the dynamic heat transfer function 
consumes more computation. For the conventional numerical method, the state space method 
and frequency domain method (the solvers that most white box simulation tools nowadays use), 
the solution of the dynamic heat transfer sometimes brings about inaccuracies and usually costs 
great amount of computation. 

The reasons of people turn to low-order/reduced-order white box model include faster in 
computation (also means faster calibration and optimization), less inputs compared with pure 
white box modeling, physical significance kept. 

4.3. Low-order white box modeling: The electrical analogue – lumped 
capacitance 

Here we introduced the concept of thermal capacity of building denoted by Cr, in the electric 
circuit analog model (RC) that is used to describe heat flow and heat transfer phenomena. 
Where, Cr equal to the air mass (m) in the room times the specific heat capacity of air (cp) 
which change with time as shown in the following Equations (1) and (2). This method makes a 
simplified building model and solutions can be easily found. 

 

References: 

Amara, F., et al. (2015). Comparison and Simulation of Building Thermal Models for Effective 
Energy Management. Smart Grid and Renewable Energy: 95-112. 
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4.4. The prediction of indoor air temperature 

 
The low-order white box modeling is also able to catch some of the dynamic nature of building 
thermal performance due to the impacts of both thermal resistance and capacitance. For 
example, using the above 5R1C electrical analogue model taking into account of the thermal 
transmittance between adjacent zones, it is possible to have a comparatively high confidence in 
predicting zone internal air temperature when thermal mass is not too high. For example, here 
is an example of comparing indoor air temperature simulation of a simple residential building 
in Philadelphia predicted by the 5R1C model to its benchmark simulation results produced by 
the white box simulation engine - EnergyPlus: 

  
A random winter week A random summer week 

However, it should be noted that deviations may occur when heavy thermal mass is used in 
such low-capacitance-order white model. 
References: 
Shen, P., Braham, W., Yi, Y., 2018. Development of a lightweight building simulation tool using 

simplified zone thermal coupling for fast parametric study. Applied Energy 223, 188-214. 
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4.5. The difference between low order white model and grey box model 

 
Low order white box modeling involves physical parameters that do have a real thermophysical 
meaning for buildings, and the calibration procedure deals with the tuning of those parameters, 
while the calibration of grey box models usually deals with guessing and turning of the 
imaginary (or “proxy”) parameters that represents the overall performance of the building 
envelopes or heat gain (loss).  

4.6. Pros and cons of low order white box: 
Pros: 
 Clear model internal structure 
 Extrapolation enabled (under various scenarios) 
 Physical meaning 
 Can be used for optimization 
Cons: 
 Lose some predictive accuracy compared with pure white box model 



Blackbox Modelling  

Ravi Srinivasan, University of Florida 

 

 

Agent based Modelling (Occupant behaviour Modelling) 
Machine Learning and Building Energy prediction: 
Ensemble models: 
Air quality and Indoor emission: 
 

 

 

  

White, Black, Gray Box Modelling 
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Agent based Modelling (Occupant behaviour Modelling) 
Occupant behaviour is hard to track inside a thermal zone whereas occupant number (count) is relatively 
easy to track. Uncertainties in energy estimation has been tracked to occupant behaviour. Among others, 
one approach to track occupant behaviour is by using Agent-based modelling (ABM). At the UrbSys Lab, 
University of Florida, we have done extensive studies of using ABM for improving energy estimations. 
For this purpose, we used LBNL’s Building Control Virtual Test Bed (BCVTB) that linked both 
EnergyPlus™ and an ABM, PMFServ (from University of Pennsylvania). Some significant work in this 
area are listed below. 

1) Jia, M., Srinivasan, R.S., Ries, R., Weyer, N., Bharathy, G. (2019). A systematic development 
and validation approach to a novel agent-based modelling of occupant behaviours in commercial 
buildings. Energy and Buildings, 199: 352-367; https://doi.org/10.1016/j.enbuild.2019.07.009 

2) Jia, M., Srinivasan, R.S., Ries, R., Bharathy, G., Weyer, N. Investigating the Impact of Actual 
and Modeled Occupant Behavior Information Input to Building Performance Simulation. 
Buildings 2021, 11(1), 32; https://doi.org/10.3390/buildings1101003 

3) Jia, M. and Srinivasan, R.S. (2020). Building Performance Evaluation using Coupled Simulation 
of EnergyPlus™ and an Occupant Behavior Model. Sustainability 2020, 12(10), 4086. 
https://doi.org/10.3390/su12104086 

4) Jia M, Srinivasan R.S., Raheem A.A. (2017). From Occupancy to Occupant Behavior: An 
Analytical Survey of Data Acquisition Technologies, Modeling Methodologies, and Simulation 
Coupling Mechanisms for Building Energy Efficiency. Renewable and Sustainable Energy 
Reviews, 68(1): 525-540; https://doi.org/10.1016/j.rser.2016.10.011 

5) Mengda, J., Srinivasan, R.S., Bharathy, G., Silverman, B.S., Weyer, N. An Agent-based Model 
Approach for Simulating Interactions between Occupants and Building Systems. Building 
Simulation 2017; https://doi.org/10.26868/25222708.2017.673 (Conference) 

6) Berger, Christiane, and Ardeshir Mahdavi. "Review of current trends in agent-based modeling of 
building occupants for energy and indoor-environmental performance analysis." Building and 
Environment 173 (2020): 106726. https://doi.org/10.1016/j.buildenv.2020.106726 

7) Dziedzic, Jakub Wladyslaw, Da Yan, Hongsan Sun, and Vojislav Novakovic. "Building occupant 
transient agent-based model–Movement module." Applied Energy 261 (2020): 114417. 
https://doi.org/10.1016/j.apenergy.2019.114417 

8) Micolier, Alice, Franck Taillandier, Patrick Taillandier, and Frédéric Bos. "Li-BIM, an agent-
based approach to simulate occupant-building interaction from the Building-Information 
Modelling." Engineering Applications of Artificial Intelligence 82 (2019): 44-59. 
https://doi.org/10.1016/j.engappai.2019.03.008 

9) Vellei, Marika, Simon Martinez, and Jérôme Le Dréau. "Agent-based stochastic model of 
thermostat adjustments: A demand response application." Energy and Buildings 238 (2021): 
110846. https://doi.org/10.1016/j.enbuild.2021.110846 

10) Chong, Adrian, Godfried Augenbroe, and Da Yan. "Occupancy data at different spatial 
resolutions: Building energy performance and model calibration." Applied Energy 286 (2021): 
116492. https://doi.org/10.1016/j.apenergy.2021.116492 

Machine Learning and Building Energy prediction: 
ML approaches to building energy prediction has gained more traction owing to processing power and 
data availability. Such predictions can be extended beyond one building, i.e., to a university-campus or 
even entire cities. There are several ML approaches that may be used, however, there is no one type of 

https://doi.org/10.26868/25222708.2017.673
https://doi.org/10.1016/j.buildenv.2020.106726
https://doi.org/10.1016/j.apenergy.2019.114417
https://doi.org/10.1016/j.engappai.2019.03.008
https://doi.org/10.1016/j.enbuild.2021.110846
https://doi.org/10.1016/j.apenergy.2021.116492
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ML that fits a type of building. The selection of ML is based on dependent and independent variables; 
data availability including weather; frequency; and other uncertainties in data. Below, you can find some 
examples of individual to campus buildings’ energy use prediction. Our work related to campus buildings 
(refer to the first article below) uses time-series data and we found that ARIMA was best suited for such 
data.  

1) Fathi, S., Srinivasan, R.S., Kibert, C.J., Steiner, R.L., and Demirezen, E. AI-based Campus 
Energy Use Prediction for Assessing the Effects of Climate Change. Sustainability 2020, 12, 
3223; http://dx.doi.org/10.3390/su12083223 

2) Wang, Z., Wang, Y., Srinivasan R.S. (2018). Random Forest-based Hourly Building Energy 
Prediction. Energy and Buildings, 171 (15): 11-25; https://doi.org/10.1016/j.enbuild.2018.04.008 

3) Wang, Z., Srinivasan, R.S., Shi, J. (2016). Artificial Intelligence Models for Improved Prediction 
of Residential Heating. ASCE Journal of Energy Engineering, 142(4) 
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EY.1943-7897.0000342 

4) Amasyali, Kadir, and Nora El-Gohary. "Machine learning for occupant-behavior-sensitive 
cooling energy consumption prediction in office buildings." Renewable and Sustainable Energy 
Reviews 142 (2021): 110714. https://doi.org/10.1016/j.rser.2021.110714 

5) Lei, Lei, Wei Chen, Bing Wu, Chao Chen, and Wei Liu. "A building energy consumption 
prediction model based on rough set theory and deep learning algorithms." Energy and Buildings 
(2021): 110886. https://doi.org/10.1016/j.enbuild.2021.110886 

6) Fan, Cheng, Yongjun Sun, Yang Zhao, Mengjie Song, and Jiayuan Wang. "Deep learning-based 
feature engineering methods for improved building energy prediction." Applied energy 240 
(2019): 35-45. https://doi.org/10.1016/j.apenergy.2019.02.052 

7) Guo, Yabin, Jiangyu Wang, Huanxin Chen, Guannan Li, Jiangyan Liu, Chengliang Xu, 
Ronggeng Huang, and Yao Huang. "Machine learning-based thermal response time ahead energy 
demand prediction for building heating systems." Applied energy 221 (2018): 16-27. 
https://doi.org/10.1016/j.apenergy.2018.03.125 

8) Singaravel, Sundaravelpandian, Johan Suykens, and Philipp Geyer. "Deep-learning neural-
network architectures and methods: Using component-based models in building-design energy 
prediction." Advanced Engineering Informatics 38 (2018): 81-90. 
https://doi.org/10.1016/j.aei.2018.06.004 

9) Zekić-Sušac, Marijana, Saša Mitrović, and Adela Has. "Machine learning based system for 
managing energy efficiency of public sector as an approach towards smart cities." International 
journal of information management 58 (2021): 102074. 
https://doi.org/10.1016/j.ijinfomgt.2020.102074 

10) Ahmad, Tanveer, Huanxin Chen, Ronggeng Huang, Guo Yabin, Jiangyu Wang, Jan Shair, Hafiz 
Muhammad Azeem Akram, Syed Agha Hassnain Mohsan, and Muhammad Kazim. "Supervised 
based machine learning models for short, medium and long-term energy prediction in distinct 
building environment." Energy 158 (2018): 17-32. https://doi.org/10.1016/j.energy.2018.05.169 

Ensemble models: 
Instead of using a single ML for prediction, one approach is to use ensemble models (homogenous and 
heterogenous). Below, you can see some excellent examples of ensemble modeling of building energy 
prediction.  

https://doi.org/10.1016/j.enbuild.2018.04.008
https://doi.org/10.1016/j.rser.2021.110714
https://doi.org/10.1016/j.enbuild.2021.110886
https://doi.org/10.1016/j.apenergy.2019.02.052
https://doi.org/10.1016/j.apenergy.2018.03.125
https://doi.org/10.1016/j.aei.2018.06.004
https://doi.org/10.1016/j.ijinfomgt.2020.102074
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1) Wang Z, Srinivasan R.S. (2017). A Review of Artificial Intelligence based Building Energy Use 
Prediction: Contrasting the Capabilities of Single and Ensemble Prediction Models. Renewable 
and Sustainable Energy Reviews. 75:796-808; https://doi.org/10.1016/j.rser.2016.10.079 

2) Wang, Z., Srinivasan, R.S. (2017). A Review on Applications of Artificial Intelligence based 
Building Energy Use Prediction with a Focus on Single vs Ensemble Prediction Models – 
Contrasting their Capabilities. Renewable & Sustainable Energy Reviews, 75: 796-808; 
https://doi.org/10.1016/j.rser.2016.10.079 

3) Wang, S., Zheng, P., Srinivasan, R.S. (2017). A Novel Ensemble Learning Approach to Support 
Building Energy Use Prediction. Energy and Buildings, 159(15): 109-122; 
https://doi.org/10.1016/j.enbuild.2017.10.085 

4) Wang, Lan, Eric WM Lee, and Richard KK Yuen. "Novel dynamic forecasting model for 
building cooling loads combining an artificial neural network and an ensemble approach." 
Applied Energy 228 (2018): 1740-1753. https://doi.org/10.1016/j.apenergy.2018.07.085 

5) Dong, Zhenxiang, Jiangyan Liu, Bin Liu, Kuining Li, and Xin Li. "Hourly energy consumption 
prediction of an office building based on ensemble learning and energy consumption patterns 
classification." Energy and Buildings (2021): 110929. 
https://doi.org/10.1016/j.enbuild.2021.110929 

6) Huang, Yao, Yue Yuan, Huanxin Chen, Jiangyu Wang, Yabin Guo, and Tanveer Ahmad. "A 
novel energy demand prediction strategy for residential buildings based on ensemble learning." 
Energy Procedia 158 (2019): 3411-3416. https://doi.org/10.1016/j.apenergy.2020.115025 

7) Al-Rakhami, Mabrook, Abdu Gumaei, Ahmed Alsanad, Atif Alamri, and Mohammad Mehedi 
Hassan. "An ensemble learning approach for accurate energy load prediction in residential 
buildings." IEEE Access 7 (2019): 48328-48338. DOI: 10.1109/ACCESS.2019.2909470 

8) S. Kumar T.M., C. P. Kurian and S. G. Varghese, "Ensemble Learning Model-Based Test 
Workbench for the Optimization of Building Energy Performance and Occupant Comfort," in 
IEEE Access, vol. 8, pp. 96075-96087, 2020, doi: 10.1109/ACCESS.2020.2996546. 

9) Zhang, Guiqing, Chenlu Tian, Chengdong Li, Jun Jason Zhang, and Wangda Zuo. "Accurate 
forecasting of building energy consumption via a novel ensembled deep learning method 
considering the cyclic feature." Energy 201 (2020): 117531. 
https://doi.org/10.1016/j.energy.2020.117531 

10) Araya, Daniel B., Katarina Grolinger, Hany F. ElYamany, Miriam AM Capretz, and Girma 
Bitsuamlak. "An ensemble learning framework for anomaly detection in building energy 
consumption." Energy and Buildings 144 (2017): 191-206. 
https://doi.org/10.1016/j.enbuild.2017.02.058 

Most recently, we published an article listing issues in actual implementation of ML models for building 
energy efficiency. Wang, Z., Liu, J., Yuan, H., Zhang, R., Srinivasan, R.S. Practical Issues in 
Implementing Machine Learning Models for Building Energy Efficiency: Moving Beyond Obstacles. 
Renewable and Sustainable Energy Reviews. Volume 143, June 2021, 110929; 
ttps://doi.org/10.1016/j.rser.2021.110929 

Air quality and Indoor emission:  
Below you can see examples of low cost, affordable indoor air quality monitoring approaches. Currently, 
we are using mixed methods research (using both qualitative and quantitate data) to interpret/ model/ 
correlate to identify factors influencing indoor air pollution in buildings. This work is still not published. 

https://doi.org/10.1016/j.enbuild.2021.110929
https://doi.org/10.1016/j.apenergy.2020.115025
https://doi.org/10.1016/j.energy.2020.117531
https://doi.org/10.1016/j.enbuild.2017.02.058
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1) Zhang, H., Srinivasan, R.S., Ganesan, V. Low Cost, Multi-Pollutant Sensing System using 
Raspberry Pi for Realtime Indoor Air and Environmental Condition Monitoring. Sustainability 
2021, 13(1), 370; https://doi.org/10.3390/su13010370 

2) Zhang, H. and Srinivasan, R.S. A Systematic Review of Air Quality Sensors, Guidelines, and 
Measurement Studies for Indoor Air Quality Management. Sustainability 2020, 12(21), 9045; 
https://doi.org/10.3390/su12219045 

3) Wu, Peihao, Zhaosong Fang, Hui Luo, Zhimin Zheng, Kaiyue Zhu, Yanping Yang, and Xiaoqing 
Zhou. "Comparative analysis of indoor air quality in green office buildings of varying star levels 
based on the grey method." Building and Environment (2021): 107690. 
https://doi.org/10.1016/j.ifacol.2019.12.430 

4) Ganesh, Hari S., Kyeongjun Seo, Hagen E. Fritz, Thomas F. Edgar, Atila Novoselac, and Michael 
Baldea. "Indoor air quality and energy management in buildings using combined moving horizon 
estimation and model predictive control." Journal of Building Engineering 33 (2021): 101552. 
https://doi.org/10.1016/j.jobe.2020.101552 

5) L. Zhao, W. Wu and S. Li, "Design and Implementation of an IoT-Based Indoor Air Quality 
Detector With Multiple Communication Interfaces," in IEEE Internet of Things Journal, vol. 6, 
no. 6, pp. 9621-9632, Dec. 2019, doi: 10.1109/JIOT.2019.2930191.. 

6) Salman, N., Andrew H. Kemp, A. Khan, and C. J. Noakes. "Real time wireless sensor network 
(WSN) based indoor air quality monitoring system." IFAC-PapersOnLine 52, no. 24 (2019): 324-
327. https://doi.org/10.1016/j.ifacol.2019.12.430 

7) Shan, Ning. "Research on Indoor Environment Design Based on VR Technology and Wireless 
Sensor Network." Microprocessors and Microsystems 83 (2021): 103999. 
https://doi.org/10.1016/j.micpro.2021.103999 

8) J. Kim, C. Chu and S. Shin, "ISSAQ: An Integrated Sensing Systems for Real-Time Indoor Air 
Quality Monitoring," in IEEE Sensors Journal, vol. 14, no. 12, pp. 4230-4244, Dec. 2014, doi: 
10.1109/JSEN.2014.2359832. 

9) P. Spachos and D. Hatzinakos, "Real-Time Indoor Carbon Dioxide Monitoring Through 
Cognitive Wireless Sensor Networks," in IEEE Sensors Journal, vol. 16, no. 2, pp. 506-514, 
Jan.15, 2016, doi: 10.1109/JSEN.2015.2479647. 

10) Caron, Alexandre, Nathalie Redon, Patrice Coddeville, and Benjamin Hanoune. "Identification of 
indoor air quality events using a K-means clustering analysis of gas sensors data." Sensors and 
Actuators B: Chemical 297 (2019): 126709. https://doi.org/10.1016/j.snb.2019.126709 

https://doi.org/10.1016/j.ifacol.2019.12.430
https://doi.org/10.1016/j.jobe.2020.101552
https://doi.org/10.1016/j.ifacol.2019.12.430
https://doi.org/10.1016/j.snb.2019.126709
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Why model IAQ and thermal comfort? 

1. Humans spend up to 90% of their time in indoors. We live, work, and learn in buildings 

2. Socio-economic benefits of improved indoor environmental quality (IEQ) 

3. Buildings don’t use energy, people do 

4. Indoor air quality (IAQ) and health problems statistics 

What factors have been measuring? 

1. Controllable variables 

2. Control components, parameters, mode, and algorithm 

3. The discrepancy of building performance and human health/thermal comfort 

4. Physics-based thermoregulation models + CFD 

What variables are worth measuring? 

Analytical models of thermal comfort: steady state and adaptive comfort 

models 

1. Thermal comfort: steady state models 

2. Thermal comfort: adaptive comfort models 

3. Application and limitations 

Analytical models of IAQ 

1. Models of determining CO2 concentrations 

2. Models of determining airborne contaminants concentrations 

Thermal comfort and health defined data-driven system 

Research articles on machine learning application for indoor climate control 

 

  

White, Black, Gray Box Modelling 
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Ma, Nan, Dorit Aviv, Hongshan Guo, and William W. Braham. "Measuring the right 

factors: A review of variables and models for thermal comfort and indoor air 

quality." Renewable and Sustainable Energy Reviews 135 (2021): 110436. 

Why model IAQ and thermal comfort? 

1. Humans spend up to 90% of their time in indoors. We live, work, and learn in buildings 

This study analyzed data from a web-based survey administered to 52,980 occupants in 351 

office buildings over 10 years by the Center for the Built Environment. The most important 

parameters were satisfaction with amount of space, noise level, and visual privacy. Satisfaction 

with amount of space was ranked to be most important for workspace satisfaction, regardless of 

age group, gender, type of office (single or shared offices, or cubicles), distance of workspace 

from a window (within 4.6 m or further), or satisfaction level with workspace (satisfied or 

dissatisfied). Satisfaction with amount of space was not related to the gross amount of space 

available per person. 

Frontczak, Monika, Stefano Schiavon, John Goins, Edward Arens, Hui Zhang, and Pawel 

Wargocki. "Quantitative relationships between occupant satisfaction and satisfaction aspects of 

indoor environmental quality and building design." Indoor air 22, no. 2 (2012): 119-131. 

In this review article, the authors summarize recent advances in source characterization, 

exposure assessment, health effects associated with indoor exposures, and intervention 

research related to indoor environments. They concluded that more research is needed on the 

interactions of multiple exposures, and the risks to certain populations (such as children, the 

elderly, or socioeconomically disadvantaged populations). Identification of research priorities 

should include input from building designers, operators, and the public health community. 

Research on interventions should examine a range of outcomes and potential tradeoffs and 

confounders, and does not necessarily need to await the identification of specific causal agents. 

Mitchell, Clifford S., Junfeng Zhang, Torben Sigsgaard, Matti Jantunen, Paul J. Lioy, Robert 

Samson, and Meryl H. Karol. "Current state of the science: health effects and indoor 

environmental quality." Environmental health perspectives 115, no. 6 (2007): 958-964. 

2. Socio-economic benefits of improved indoor environmental quality (IEQ) 

This is a great book which covers origins and foundations of the built environment as a public 

health focus and its joint history with urban planning, transportation and land use, infrastructure 

and natural disasters, assessment tools, indoor air quality, water quality, food security, health 

disparities, mental health, social capital, and environmental justice. 

Lopez, Russell P. The built environment and public health. Vol. 16. John Wiley & Sons, 2012. 

The authors outlined the following priority research topics in below article: building-influenced 

communicable respiratory infections, building-related asthma/allergic diseases, and nonspecific 

building-related symptoms; indoor environmental science; and methods for increasing 

implementation of healthful building practices. Available data suggest that improving building 

environments may result in health benefits for more than 15 million of the 89 million US indoor 

workers, with estimated economic benefits of $5 to $75 billion annually. 
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Mendell, Mark J., William J. Fisk, Kathleen Kreiss, Hal Levin, Darryl Alexander, William S. Cain, 

John R. Girman et al. "Improving the health of workers in indoor environments: priority research 

needs for a national occupational research agenda." American journal of public health 92, no. 9 

(2002): 1430-1440. 

This study estimates some of the benefits and costs of implementing scenarios that improve 

indoor environmental quality (IEQ) in the stock of U.S. office buildings. The scenarios include 

increasing ventilation rates when they are below 10 or 15 l/s per person, adding outdoor air 

economizers and controls when absent, eliminating winter indoor temperatures >23°C, and 

reducing dampness and mold problems. 

Fisk, William J., Doug Black, and Gregory Brunner. "Benefits and costs of improved IEQ in US 

offices." Indoor Air 21, no. 5 (2011): 357-367. 

3. Buildings don’t use energy, people do 

This article argues that building users play a critical but poorly understood and often overlooked 

role in the built environment. To fully address the task ahead, it argues that architects need to 

develop their professional expertise to improve buildings and seek ways of integrating user 

involvement in building performance. 

Janda, Kathryn B. "Buildings don't use energy: people do." Architectural science review 54, no. 1 

(2011): 15-22. 

This paper presents ten questions, highlighting some of the most important issues regarding 

concepts, applications, and methodologies in occupant behavior research. It is crucial to 

understand occupant behavior in a comprehensive way, integrating qualitative approaches and 

data- and model-driven quantitative approaches, and employing appropriate tools to guide the 

design and operation of low-energy residential and commercial buildings that integrate 

technological and human dimensions. 

Hong, Tianzhen, Da Yan, Simona D'Oca, and Chien-fei Chen. "Ten questions concerning 

occupant behavior in buildings: The big picture." Building and Environment 114 (2017): 518-530. 

The authors reviewed papers published over the last five years (from 2014 to 2019) and 

presented information about questionnaires, interviews, brainstorming, post-occupancy 

evaluation, personal diaries, elicitation studies, ethnographic studies, and cultural probe. 

Increasing use of qualitative methods is expected to support the spread of human-centric 

policies and design/control of buildings, with a consequent overall optimization of energy 

performance of buildings as well as the comfort of occupants. 

Bavaresco, Mateus V., Simona D'Oca, Enedir Ghisi, and Roberto Lamberts. "Methods used in 

social sciences that suit energy research: A literature review on qualitative methods to assess the 

human dimension of energy use in buildings." Energy and Buildings 209 (2020): 109702. 

The authors attempt to rethink occupant behavior and its role in building energy performance by 

means of review. The review focuses on four critical research topics: a) the current 

understanding of occupant behavior, with particular focus on window opening behavior, lighting 

control behavior, and space heating/cooling behavior; b) methods and techniques for collecting 

data on behavior and building energy performance; c) quantitative modeling of occupant 

behavior and building energy performance; and d) evaluation of energy saving potentials of 

occupant behavior based on existing literature. They concluded that the energy-saving potential 
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of occupant behavior to be in the range of 10%–25% for residential buildings and 5%–30% for 

commercial buildings, based on findings of existing research. 

Zhang, Yan, Xuemei Bai, Franklin P. Mills, and John CV Pezzey. "Rethinking the role of occupant 

behavior in building energy performance: A review." Energy and Buildings 172 (2018): 279-294. 

4. Indoor air quality (IAQ) and health problems statistics 

Below study summarizes the historical development and understanding on environmental 

exposures/risks and indoor air. Indoor air was believed to be a major environmental factor for 

more than a hundred years, from the start of the hygienic revolution, around 1850, until outdoor 

environmental issues entered the scene, and became dominant around 1960. Main 

environmental issues today are outdoor air quality, energy use, and sustainable buildings, but 

not indoor air quality (IAQ). 

Sundell, Jan. "On the history of indoor air quality and health." Indoor air 14, no. s 7 (2004): 51-58. 

This overview has reviewed the literature about the effects of extended exposure to low 

humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, 

sleep quality, virus survival, and voice disruption. 

Wolkoff, Peder. "Indoor air humidity, air quality, and health–An overview." International journal of 

hygiene and environmental health 221, no. 3 (2018): 376-390. 

What factors have been measuring? 

1. Controllable variables 

This study presents a critical review of current modeling techniques used in HVAC systems 

regarding their applicability and ease of acceptance in practice and summarizes the strengths, 

weaknesses, applications and performance of these modeling techniques. Additionally, the 

performance and outcome of some of the developed models used in real world HVAC systems 

have been discussed. 

Afroz, Zakia, G. M. Shafiullah, Tania Urmee, and Gary Higgins. "Modeling techniques used in 

building HVAC control systems: A review." Renewable and sustainable energy reviews83 (2018): 

64-84. 

2. Control components, parameters, mode, and algorithm 

Advanced control strategies provide a more efficient way of minimizing energy demand of 

buildings and maintaining indoor environmental quality in accordance with global principle of 

sustainability, which has also proven reliable for diverse applications such as Heating, 

Ventilation and Air Conditioning (HVAC) control and thermal comfort control etc. The objective 

of this paper is to review the control strategies in buildings, particularly focusing on low energy 

buildings (LEB), in recent 10 years. Present work consists of why to use control strategies in 

buildings, categories of control strategies, research literature for building performance affected 

by diverse control strategies from the perspective of theoretical modelling, physical experimental 

study and numerical simulation investigation. Following that, more than 20 parameters affecting 

control performance have been analyzed and evaluated. 
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Wang, Yang, Jens Kuckelkorn, and Yu Liu. "A state of art review on methodologies for control 

strategies in low energy buildings in the period from 2006 to 2016."Energy and Buildings147 

(2017): 27-40. 

3. The discrepancy of building performance and human health/thermal comfort 

The authors reviewed research fields of thermal comfort and building control, and their 

relationship using a data-driven approach. They found that building control focuses 

predominantly on energy savings rather than incorporating results from thermal comfort, 

especially when it comes to occupant satisfaction. 

Park, June Young, and Zoltan Nagy. "Comprehensive analysis of the relationship between 

thermal comfort and building control research-A data-driven literature review." Renewable and 

Sustainable Energy Reviews 82 (2018): 2664-2679. 

4. Physics-based thermoregulation models + CFD 

This paper first reviews several thermal comfort models that address local thermal sensations 

and attempts to distinguish these models by their advantages, limitations and suitable ranges of 

applications. Then, two typical thermal comfort models, the simple ISO 14505 standard method 

and the comprehensive UC Berkeley thermal comfort model (UCB model), were coupled to 

computational fluid dynamic (CFD) numerical simulation with different process to evaluate 

thermal environment of a small office. The results indicated that compared with the UCB model, 

the ISO 14505 index could be applied with caution as a convenient method to evaluate thermal 

comfort in non-uniform, overall thermally neutral environments. 

Cheng, Yuanda, Jianlei Niu, and Naiping Gao. "Thermal comfort models: A review and numerical 

investigation." Building and environment 47 (2012): 13-22. 

The Berkeley Comfort Model is based on the Stolwijk model of human thermal regulation but 

includes several significant improvements. This new model proposed by the authors allows an 

unlimited body segments (compared to six in the Stolwijk model). Each segment is modeled as 

four body layers (core, muscle, fat, and skin tissues) and a clothing layer. Physiological 

mechanisms such as vasodilation, vasoconstriction, sweating, and metabolic heat production 

are explicitly considered. Convection, conduction (such as to a car seat or other surface in 

contact with any part of the body) and radiation between the body and the environment are 

treated independently. The model is capable of predicting human physiological response to 

transient, non-uniform thermal environments. 

Huizenga, Charlie, Zhang Hui, and Edward Arens. "A model of human physiology and comfort for 

assessing complex thermal environments." Building and Environment 36, no. 6 (2001): 691-699. 

The authors investigated the pollutant exposure reduction and thermal comfort that can be 

achieved with personalised ventilation (PV) design when a PV system is combined with two 

types of background air conditioning systems. For the investigation of inhaled air quality, 

pollutants emitted from building materials are the targeted pollutants; and for the investigation of 

thermal comfort, local discomfort associated with nonuniform thermal environment is focused 

upon. These investigations were performed by combining CFD simulation of the 3D air flow and 

a multi-nodal human body thermo-regulation model. The results reveal some new 
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characteristics of the three typical air distribution designs, i.e. mixed ventilation, displacement 

ventilation and PV, and provide insight into the possible optimization of system combinations. 

Gao, N. P., H. Zhang, and J. L. Niu. "Investigating indoor air quality and thermal comfort using a 

numerical thermal manikin." Indoor and built environment 16, no. 1 (2007): 7-17. 

What variables are worth measuring? 

This paper reviews the existing systems and proposes an innovation in HVAC systems 

management: a system that tracks the occupants’ preferences, learns from them, and manages 

HVAC automatically. We show that ambient intelligent systems can be used to control a 

building’s Energy Management Systems (EMS), effectively reducing energy consumption while 

maintaining acceptable comfort levels. Our results indicate that employing a k-means machine 

learning technique enables the automatic configuration of an HVAC system to reduce energy 

consumption while keeping the majority of occupants within acceptable comfort levels. 

Carreira, Paulo, António Aguiar Costa, Vitor Mansur, and Artur Arsénio. "Can HVAC really learn 

from users? A simulation-based study on the effectiveness of voting for comfort and energy use 

optimization." Sustainable cities and society 41 (2018): 275-285. 

The objective of this paper is to highlight evidence and variables from empirical and 

deterministic models, which are combined in analytical models that current machine learning 

techniques often overlook. Eighteen critical variables are extracted from forty-five works closely 

related to the field (as listed in the table). 

Ma, Nan, Dorit Aviv, Hongshan Guo, and William W. Braham. "Measuring the right factors: A 

review of variables and models for thermal comfort and indoor air quality." Renewable and 

Sustainable Energy Reviews 135 (2021): 110436. 

Summary of input variables that are worthy measuring. 

Subgroupsa Variables of IAQ-related thermal comfort and healthb Topicsc 

Environmental survey Outdoor temperature (𝑇𝑜𝑢𝑡) TC 

 Wind velocity (𝑣𝑎) TC+H 

 Outdoor relative humidity (𝑅𝐻𝑜𝑢𝑡) H 

 Outdoor contaminants concentration (𝐶𝑜𝑢𝑡) H 

Design 

Room dimensionsd (Dim) H 

Ceiling height (H) H 

Total surface area (A) TC+H 

 Penetration factor through envelope/door (P) H 

Material selection Radiant temperature (𝑇𝑀𝑅) TC 

 Temperature of surfacee (𝑇𝑖) TC 

Operation 

Indoor relative humidity (𝑅𝐻𝑖𝑛) TC+H 

Volume flow rate (Natural, Mechanical, Infiltration) (Q) TC+H 

Indoor temperature (𝑇𝑎) TC+H 

Air densityf (𝜌) H 

Contaminants generation/deposition/removal concentrations/rates (G) H 

Number of occupants (N) H 

Exposure time (t) TC+H 

Air exchange rate (𝐸𝑋) H 

a Total eighteen input variables are arranged based on the different phases of buildings; 
b The listed variables are given its abbreviation in parentheses to keep consist in Nomenclature, figures and tables; 
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c TC and H represent that this variable stem from topics of thermal comfort and health respectively; TC+H means 

thermal comfort and health fields both echo and cover this variable; 
d Analytical models uses volume of a space more often, while it is determined from size of the space and ceiling 

height; 
e Temperature of surface implies for surface temperatures of each material in accordance to air temperature; 
f Air density is hardly measurable, but is correlated with air pressure, temperature, humidity and dew point.  

Analytical models of thermal comfort: steady state and adaptive comfort models 

1. Thermal comfort: steady state models 

These two articles are the classic readings where Fanger proposed his thermal comfort models. 

Fanger, Poul O. "Thermal comfort. Analysis and applications in environmental 

engineering." Thermal comfort. Analysis and applications in environmental engineering. (1970). 

Fanger, Poul O. "Calculation of thermal comfort-introduction of a basic comfort 

equation." ASHRAE Transacions 73 (1967). 

2. Thermal comfort: adaptive comfort models 

These three articles are the typical adaptive comfort models. The authors proposed different 

correction coefficient to modify Fanger’s model for different building types and ventilation 

modes. 

Yao, Runming, Baizhan Li, and Jing Liu. "A theoretical adaptive model of thermal comfort–

Adaptive Predicted Mean Vote (aPMV)." Building and environment 44, no. 10 (2009): 2089-2096. 

Humphreys, Michael A., and J. Fergus Nicol. "The validity of ISO-PMV for predicting comfort 

votes in every-day thermal environments." Energy and buildings 34, no. 6 (2002): 667-684. 

Atmaca, Ibrahim, Omer Kaynakli, and Abdulvahap Yigit. "Effects of radiant temperature on 

thermal comfort." Building and environment 42, no. 9 (2007): 3210-3220. 

3. Application and limitations 

This paper looks critically at the foundation and underlying assumptions of the adaptive model 

approach and its findings.  

Halawa, Edward, and J. Van Hoof. "The adaptive approach to thermal comfort: A critical 

overview." Energy and Buildings 51 (2012): 101-110. 

Analytical models of IAQ 

A comprehensive summary of standards and guidelines as developed by various worldwide 

organizations. 

Abdul-Wahab, Sabah Ahmed, Stephen Chin Fah En, Ali Elkamel, Lena Ahmadi, and Kaan 

Yetilmezsoy. "A review of standards and guidelines set by international bodies for the parameters 

of indoor air quality." Atmospheric Pollution Research 6, no. 5 (2015): 751-767. 

The primary IAQ standards and guidelines stipulated by WHO and the United States’ authentic 

agencies. 

American Society of Heating, Refrigerating and Air Conditioning Engineer (ASHRAE) 
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ANSI/ASHRAE Standard 621-2016 Ventilation for acceptable Indoor air Quality 2016 

Occupational Safety and Health Administration (OSHA) 

OSHA, OS. "OSHA Technical Manual-Section III: Chapter 2: Indoor Air Quality." (1999). 

US Environmental Protection Agency (EPA) 

Mudarri, David H. "Building codes and indoor air quality." US EPA (2010). 

Koontz, M. D., G. M. Zarus, M. J. Stunder, and N. L. Nagda. "Air toxics risk 

assessment." (1991). 

World Health Organization (WHO) 

World Health Organization. "WHO guidelines for indoor air quality: selected pollutants." 

(2010). 

World Health Organization. Air quality guidelines: global update 2005: particulate matter, 

ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, 2006. 

1. Models of determining CO2 concentrations 

The results indicate that, compared to the existing fixed ventilation rate strategy at which the 

ventilation rate is always 5% of the total supply air flow, a cooling coil energy savings of 0.03% 

and 1.86% can be achieved using an occupancy detection control strategy under the new 

ASHRAE 62.1 and old ASHRAE 62 respectively, while preserving thermal comfort and indoor 

air quality. 

Ng, Malcolm Owen, Ming Qu, Pengxuan Zheng, Zhiyuan Li, and Yin Hang. "CO2-based demand 

controlled ventilation under new ASHRAE Standard 62.1-2010: a case study for a gymnasium of 

an elementary school at West Lafayette, Indiana." Energy and Buildings 43, no. 11 (2011): 3216-

3225. 

Experiments were conducted in a school office by measuring indoor CO2 concentrations and 

pressure differences between the return air vent and space. Excellent agreement was obtained. 

At least 0.998 R2 values were obtained for fitting measured CO2 concentrations when 

conducting MLE for estimating space air change rate, and the corresponding residual plots 

showed no pattern and trend. The estimated numbers of occupants were same as the actual 

ones. Furthermore, the predicted space air change rates showed great consistencies with those 

from CO2 equilibrium analysis. The model is simple, handy and effective for practical use. 

Moreover, the model is also capable for dealing with time-varying space air change rates. 

Lu, Tao, Anssi Knuutila, Martti Viljanen, and Xiaoshu Lu. "A novel methodology for estimating 

space air change rates and occupant CO2 generation rates from measurements in mechanically-

ventilated buildings." Building and Environment 45, no. 5 (2010): 1161-1172. 

2. Models of determining airborne contaminants concentrations 

The review paper publication where you can find online elaborates and specifies all the 

equations listed on the slides. In this summary I just pick three great articles that are worthy 

reading in full text: 
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Nazaroff, William W. "Indoor particle dynamics." Indoor air 14, no. Supplement 7 (2004): 

175-183. 

Walker, Iain S., and Max H. Sherman. "Effect of ventilation strategies on residential 

ozone levels." Building and environment 59 (2013): 456-465. 

Ye, Wei, Doyun Won, and Xu Zhang. "A practical method and its applications to prioritize 

volatile organic compounds emitted from building materials based on ventilation rate 

requirements and ozone-initiated reactions." Indoor and Built Environment 26, no. 2 

(2017): 166-184. 

Thermal comfort and health defined data-driven system 

There are two review papers which are also comprehensive to summarize ANN structure, input 

features, outcome variables, and how machine learning techniques help forecast thermal 

comfort and IAQ. 

Enescu, Diana. "A review of thermal comfort models and indicators for indoor 

environments." Renewable and Sustainable Energy Reviews 79 (2017): 1353-1379. 
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Wei, Wenjuan, Olivier Ramalho, Laeticia Malingre, Sutharsini Sivanantham, John C. Little, and 

Corinne Mandin. "Machine learning and statistical models for predicting indoor air quality." Indoor 

Air 29, no. 5 (2019): 704-726. 
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Research articles on machine learning application for indoor climate control 

This research article explains extensively on sensor network deployment, data collection, and 

learning model development. For a period of five months, the resulting learning-based 

temperature preference control (LTPC) was applied to a cooling system of an office space 

under real-world conditions. The experimental results indicate that occupant preferences in the 

individual rooms differ from each other in both time horizon and temperature levels. The results 

report energy savings of between 4% and 25% as compared to static temperature setpoints at 

the low values of preferred temperature ranges. 

Peng, Yuzhen, Zoltán Nagy, and Arno Schlüter. "Temperature-preference learning with neural 

networks for occupant-centric building indoor climate controls." Building and Environment 154 

(2019): 296-308. 

Our review study only focuses on environmental parameters, however much research collected 

physiological data and used them to predict thermal comfort/IAQ. For example: 

This paper proposes a personal TSI prediction method termed as the enhanced Predicted 

Thermal State (ePTS) method by sensing physiological parameters namely, hand skin 

temperature and pulse rate, along with the ambient air temperature. The ePTS method achieves 

the highest accuracy at over 97%, outperforming the PTS model (82%), and other physiology 

based methods (82%–94%). 

Chaudhuri, Tanaya, Yeng Chai Soh, Hua Li, and Lihua Xie. "Machine learning driven personal 

comfort prediction by wearable sensing of pulse rate and skin temperature." Building and 

Environment 170 (2020): 106615. 

Using combined skin temperatures from different body segments can improve the model to over 

90% accuracy. Results show that three skin locations contained enough information for 

classification and more would cause the curse of dimensionality. 

Dai, Changzhi, Hui Zhang, Edward Arens, and Zhiwei Lian. "Machine learning approaches to 

predict thermal demands using skin temperatures: Steady-state conditions." Building and 

Environment 114 (2017): 1-10. 

 

Fig. The controlling concept of SVM classifier based on skin temperature. 

Machine learning-based electroencephalogram (EEG) pattern recognition methods as feedback 

mechanisms were investigated. Results showed that EEG theta band (4–8 Hz) correlated with 

subjective perceptions, and EEG alpha band (8–13 Hz) correlated with task performance. These 

EEG indices could be utilized as more objective metrics in addition to questionnaire and task-

based metrics. For the machine learning-based EEG pattern recognition methods, the linear 
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discriminant analysis (LDA) and support vector machine (SVM) classifiers can classify mental 

states under different indoor air quality conditions with high accuracy. 

Shan, Xin, En-Hua Yang, Jin Zhou, and Victor WC Chang. "Neural-signal electroencephalogram 

(EEG) methods to improve human-building interaction under different indoor air quality." Energy 

and Buildings 197 (2019): 188-195. 

 

Fig. Machine learning-based EEG pattern recognition methods as real-time feedback 

mechanisms have good potential to improve the human-building interaction 
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Carbon Neutrality and Energy Models 
Since President Amy Gutman first committed the University of Pennsylvania to the American College 
and University Presidents Climate Commitment (ACUPCC) in 2007, annual carbon footprints have 
shown that the vast majority of our greenhouse gas emissions are the result of energy consumption in the 
built environment. Early plans to achieve carbon neutrality focused on reducing energy consumption in 
the built environment through projects such as recommissioning systems, renovating buildings to improve 
the envelope, or efficiency gains through equipment replacement. However, there was initially little to no 
submetering of steam or chilled water consumption at the building level which limited the ability to 
accurately gauge the true potential for reduction in the built environment through those measures.  

The following sections describe how building level energy consumption data has been acquired and 
utilized through three phases corresponding to iterations of the University’s five-year plan towards carbon 
neutrality. From an energy modeling perspective, the focus of each phase shifted from data acquisition to 
data-driven black box models to low-order white box models in order to best utilize the data available to 
us to identify the potential for reductions in the built environment. As the construction and development 
of both white and black box models has been covered in other modules, the discussion will center on how 
these tools were applied to a real-world scenario to achieve actionable results.  

Climate Action Plan I 
The first Climate Action Plan (CAP, 2009) was released in 2009 was intended to provide a framework for 
how the University would achieve carbon neutrality by 2042. A centerpiece of the plan was a chart 
showing the historical carbon footprint for the University through to the current year, FY09. Beyond 
FY09 historical data is replaced by a wedge diagram that projects the FY09 carbon footprint through to 
FY42. A baseline was calculated by assuming that historical growth would continue. The goal of 
neutrality by 2042 was envisioned to be achievable primarily through a series of programs that would 
rightly be focused on the built environment.  
 

 
Figure 1- Wedge Diagram for CAP1 
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A significant hinderance to this effort was the lack of actual data on the energy performance of most 
individual buildings on campus. While some limited submetering existed, for the most part the only way 
to capture the steam and chilled water usage was at the campus level. Without this data at the building 
level, it was not possible to link the goals for reductions laid out in the Climate Action Plan to specific 
renovation and recommissioning projects in University properties. Aware of this deficit, the University 
began to install meters for steam and chilled water in the majority of the buildings that are connected to 
those campus level loops. It was a process that took several years and was not completed until 2014.  
 
The timing of the initial meter data was such that it coincided with the preparation for the second iteration 
of the 5-year Climate Action Plan. Unlike before it was now possible to consider the energy consumption 
of individual buildings. Unfortunately, though the meter installation was largely complete by this 
juncture, there was a minimal historical record for most of those sensors. Further, the sensors were subject 
to a calibration period during which the returned data was unreliable. Despite this, an annual energy 
profile was created for all metered buildings by combining actual meter data, where it was available, with 
estimates generated by a very simple low-order white box model to fill in any gaps.  
 
This allowed for each building’s energy consumption to be compared against benchmarks for its building 
type to gauge its overall performance and estimate potential reductions. This analysis showed that the first 
Carbon Action Plan had likely overestimated the potential for achieving energy reductions in the built 
environment by not considering the overlapping impacts of different effects and the limits of reductions 
that could be achieved through renovation and recommissioning. It also showed the limits of the data that 
was being acquired in its raw form. While in this iteration the targets are refined, in that buildings that 
seem to be higher energy consumers can be investigated, the data itself is messy and does not provide 
insight into specific actions that could be taken to address the poor performance. It was clear that a deeper 
understanding of energy consumption at the building level would be required to provide actionable 
information.  

BPAT+ Normative Model  
A very simple white box model that was based on same ISO framework as SimPyBuild. This model only 
considered a single zone, envelope areas, materials, orientations, system types, plug-loads, light-loads, 
and schedules. The model was used to estimate energy consumption for unmetered buildings, but outputs 
could not be evaluated against metered consumption to verify accuracy so uses were limited. 

Climate Action Plan 2  
Drawing on the new meter data for steam and chilled water use at the building level, Climate Action Plan 
2.0 (CAP2) was developed for FY14-FY19 was able to reevaluate the generic proposals made in CAP1 to 
determine what potential effect they may have on the actual building stock at the University. Further, one 
of the initiatives from CAP1 had led to a series of renovation and lighting projects under a program called 
the Century Bond which allowed better evaluation of the costs and energy reductions associated with 
these types of renovations. This data confirmed what had been previously suspected, that there were 
fewer overall reductions possible in the built environment than had been assumed in CAP1, but also that 
pursuing the deepest of those reductions would carry a steep price tag.  
 
By basing CAP2 on the proposals of CAP1, the new data on building energy use, and the costs and 
impacts of the projects being explored under the Century Bond it is clear how significant the over-
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estimates of CAP1 were regarding the potential for carbon reductions in the built environment. While this 
made it apparent that alternative means of achieving neutrality were necessary it also highlighted that 
only a fraction of the potential reductions in the built environment were being addressed by the projects 
proposed under the Century Bond. A significant task remaining if those projected reductions were to be 
realized would be to thoroughly evaluate the building stock and to identify the actual projects that could 
be undertaken in the worst performers to reduce energy consumption on a scale comparable to that seen in 
the Century Bond.  
 

 
Figure 2- Wedge diagram for CAP2 

The newly acquired meter data provided the most promising avenue to explore this question but several 
issues remained with the data itself, primarily that long spans of data from individual meters was 
frequently missing or had been returned from a meter prior to calibration. In order to clean the data, 
values for the faulty or missing data would need to be estimated and inserted. To this end a data-driven 
black box model was created that models the relationship each building has between its energy electric, 
steam, and chilled water consumption and external variables including weather conditions and the date.  
 
In addition to cleaning the raw meter data and allowing for better evaluation of the scale of energy 
consumption between buildings, the black box model would also be utilized for two further analyses that 
would further the goal of identifying potential reductions in the built environment: 1) feature importance 
analysis to indicate the external variables to which energy consumption in a building is sensitive and 2) 
using the model to identify buildings whose energy performance has declined compared to what would be 
predicted based on prior observations correlating energy use to external variables. 

Black Box Model 
This model uses a random forest regressor to predict the energy consumption of a individual building for 
electricity, steam, and chilled water. (Braham et al, 2016) Other machine learning models were 
considered and evaluated, but this configuration consistently yielded more accurate results. (Amasyali, 
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2018; Bordeau, 2019, Wang, 2017) The attributes used to train this model and for predictions are month, 
hour, temperature, relative humidity, wind, precipitation, cloud cover, solar irradiance, and snowfall. The 
energy meter data is received in 15-minute increments, but these are aggregated to hourly values as that is 
the finest granularity available for the weather data that was purchased. 

The black box model aides the analysis of University buildings in two ways. Firstly, it takes the meter 
data, which is often messy or incomplete, and interpolates a clean data set for each year using the 
predictions of the model. This increases confidence in the data that is being returned by the meters and 
allows for the aggregation of the data into larger blocks of time so that buildings absolute consumption 
can be determined on a monthly or annual basis. These aggregated figures allow for the traditional 
methods of evaluating the energy performance of a building: normalization and benchmarking using the 
EUI (annual energy / area). The EUIs and benchmarks allow for a direct comparison of similar types of 
buildings accounting for their scale and also gives an indication of what buildings of each type could be 
capable of achieving in terms of efficiency.  

Secondly, once trained the model provides a feature importance analysis. This result shows the relative 
level of impact that each of the external variable features had on the predicted values from the model. 
Thus, one might be able to say that a particular building’s steam consumption is highly sensitive to just 
temperature while another’s might be sensitive to both wind and temperature. While this analysis does not 
spell out the specific issue with the building, it does provide insight into what might be occurring within 
the building to yield those results and suggest starting points for further investigation.  

 

Black Box Model Data Cleaning Pipeline: 

1. Obtain 15-min meter data for individual buildings from Facilities and Real-Estate Services 

2. Obtain 1-hr weather data from a commercial vendor for the corresponding timeframe 

3. Aggregate 15-min meter data to 1-hr increments to match weather data 

4. Flag any missing values in the meter data 

5. Flag any outlier values in the meter data using double median absolute deviation outlier detection 

6. Create a data frame that joins the trusted meter data (unflagged) with the purchased weather data 
on the date and the hour 

7. Train a random forest regressor model on the joined data frame for each energy type and building 
which yields a trained model and a feature importance analysis 

8. Use the trained random forest model to predict all values flagged as missing or as outliers and 
return a copy of the original data frame with the flagged values replaced by the predicted values 

9. Save a copy of the cleaned data and feature importance analysis to disk 

Finally, the trained model can be used for auto-benchmarking. This is the process of training a model on 
the known weather conditions and energy consumption for a given time frame and then using the trained 
model to predict the energy consumption given the weather conditions in other time frames. This allows 
for a comparison of the energy consumption that was expected based on the weather conditions against 
the actual energy consumption that was metered.  

Two possible uses of this analysis are the measurement of improvement due to renovations, 
recommissioning, or operational changes within a building and the identification of system failures or 
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degradation. The utility of the auto-benchmark is the same for both cases, it allows for the comparison of 
energy data across different time frames by considering the relationship between energy and weather. 
Without considering weather and other external influences, it can be difficult to determine whether a 
building’s energy consumption patterns have changed or if the deviation detected is more the result of 
varying weather conditions.  

 

Black Box Model Auto-Benchmark Pipeline: 

1. Select baseline year and years for auto-benchmark analysis 

2. Load cleaned energy data and weather data for the baseline year from disk into data frames 

3. Join the two data frames on date and hour 

4. Train a random forest regressor model on the joined data frame for each energy type 

5. For each year to be included in the auto-benchmark analysis, load the corresponding weather data 
into a data frame 

6. Predict values for electric, steam, and chilled water consumption using the hourly weather data 
for the auto-benchmark years as instances to be evaluated by the trained model 

7. Populate a data frame with the predicted values for the auto-benchmark years 

8. Compare values predicted by model trained on baseline year against actual consumption in auto-
benchmark years 

For further analysis and generation of reports, the weather data, cleaned energy data, and auto-benchmark 
projections are all stored to disk in a relational database along with organizational and construction data 
for each building.  

Black Box Model Reporting 
During Climate Action Plan 2 an effort was undertaken to create an annual report for each metered 
building which could be used to provide a broad update to building managers and administrators on the 
energy performance of the buildings in their portfolios. The Annual Energy Reports combine the meter 
data and the outputs of the black box model with the organizational data and basic construction 
information to provide a snapshot of the buildings energy performance for that year compared to its own 
history as well as compared to similar buildings. The metrics and analyses contained within the AER are 
almost completely ignorant of the actual inner workings of any building and so the information contained 
within serves better as a warning or indicator that the building should be more deeply investigated rather 
than providing advice on how to address specific identified issues. (Chalal, 2016) 

Identification and Metrics 
The first page of the annual energy report focuses on two sections. The first contains basic identification 
information for each building such as the building ID, official name, address, height, area, department, 
and names of contacts. The second section contains totals on the monthly and annual energy consumption 
of the building along with the resulting emissions and costs from that consumption without accounting for 
the type of building, the weather conditions, or even the size of the building. This provides basic statistics 
about the energy performance of the building but no points of comparison by which good or poor 
performance might be judged. The second page of the report is devoted entirely to billing and costs data 
for each of the three data types.  
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Figure 3- Energy, Carbon, Cost Metrics 

Regional and Campus Benchmarks 
The third page of the Annual Energy Report shows the total energy consumption of each building 
compared against benchmarks. The benchmarks use energy data normalized by the area to compare the 
EUI of the building against the EUI of other buildings which are used for similar purposes. Normalization 
by the area of the buildings accounts for differences in scale. Restricting comparisons of the benchmarks 
to buildings of similar types ensures that the purpose of the building is considered, that is we should not 
expect a laboratory building to consume energy in the same way as an office building due to differences 
in its schedule of use and equipment installed.  

There are two separate pools of buildings that any University building might be benchmarked against 
representing buildings used for a similar purpose in our region and buildings used for a similar purpose on 
campus. Both the definition of the types and the energy data for the buildings in the region were obtained 
from the Building Performance Database (BPD) which is a large repository of energy data from buildings 
across the country maintained by Berkley Labs (https://buildings.lbl.gov/cbs/bpd). Each building on 
campus was assigned a type corresponding to one of the building types defined by the BPD. Then its EUI 
was compared to the distribution of EUIs for buildings in the Philadelphia region of the same type drawn 
from the BPD. Specific points of comparison were generated for each type using the distributions of EUIs 
returned by the BPD. These were the 25th percentile, the median, and the 75th percentile values, which 
were used to bound normal behavior. 

Having typed the campus buildings according to the categories defined by the BDP, the next benchmark 
compares a building’s EUI against that of similarly typed buildings from the campus portfolio. While 
these samples are too small for statistical analysis, they a much more representative sample for 
comparison, accounting for things like the urban neighborhood, energy sources, and even administration 

https://buildings.lbl.gov/cbs/bpd
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and management. The 25th percentile and 75th percentile benchmarks from the regional analysis are 
superimposed across all for additional context. 

 
Figure 4- Building Benchmarks & Energy Signature 

A final analysis can be derived from the combination of these two benchmarks which estimates the 
overall potential for energy reductions exists within each building of a similar type. This is done by using 
the 25th percentile benchmark as an “achievable goal”, a target that should be theoretically reachable as at 
least one quarter of similar buildings have done so. For each building the difference between the EUI and 
the 25th percentile is determined. This value is un-normalized by multiplying it by the building area. It 
now represents the amount of energy that is estimated could be saved if the building were improved to the 
25th percentile benchmark. Any building already performing at a better level than the 25th percentile is 
assigned a 0 by default. This now allows groups of buildings to be compared based on the total energy 
that can be saved. 

Energy Signatures 
The energy signatures displayed on the fourth page of the Annual Energy Reports are really a 
combination of several charts. The energy signature of a building considers the relationship that an energy 
source has with some other external variable, such as those that are used in the training of the black box 
model. While any attribute could be analyzed in this fashion, the most common variable to consider is 
temperature and the relationship that it has with the energy used for heating and cooling. The goal of an 
energy signature is to determine three pieces of information: does a building have different modes of 
operation based on a change point in the attribute, what is the correlation between consumption and the 
attribute in each mode of operation, and how do these calculated values compare to those found in other 
similar buildings.  
 
The first element of the energy signatures developed is a scatterplot of the energy consumption vs. 
temperature. This step may visually reveal the magnitude of correlation a building has with temperature 
and identify the temperatures at which the building’s mode begins to utilize the heating and cooling 
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systems, however to mathematically confirm this, the second element of the energy signature is a change 
point analysis. A change point analysis iteratively considers a range of potential temperatures to serve as 
the change point. The data is then divided by that temperature and single variable linear regression used to 
determine the slope and intercept of a best fit line for each segment. The combined root mean squared 
error is then calculated for each change point evaluated to find the on that yields the minimal error 
between the observed data and the calculated best fit lines. (Kissock, Haberl, and Claridge 2002) 
Visually, the calculated lines are overlayed on the scatter plot for that building as well as compared 
against the change point diagrams for other buildings of the same type.  

Auto-Benchmark 
While all the previous analyses depended on the cleaned output of the black box model, none leverage the 
full capabilities of a data-driven model. The auto-benchmark does so by moving beyond simply cleaning 
data to analyzing how the building is behaving. Unlike the other benchmarks that used other buildings as 
the point of comparison for a building’s performance, the auto-benchmark instead relies on the historical 
behaviors of the building itself and rather than comparing different physical structures, it compares 
different periods of time.  
 
The auto-benchmark is derived by training the black box model on energy and weather data from the span 
of time that will serve as the baseline period. Once trained, it will make predictions based on the 
relationships observed between the attributes (the external calendar and weather variables) and energy 
consumption of each type. This prediction represents what the expected behavior of the building would be 
for those conditions assuming that nothing has changed. (Li, 2014) 
 

 
Figure 5- Building Auto-benchmarks 
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The model can then be applied to predict the energy consumption for different periods based on the 
calendar and weather conditions in those times. The predictions for these other time periods can be 
compared against the behavior that is being observed so see if there is a deviation between the two. Times 
when the prediction exceeds the observed consumption indicate that the building is consuming less than 
expected by the model and times when the observed consumption exceeds the prediction indicate that the 
building is consuming more than was expected. 
 
The results of the auto-benchmark can be utilized in several different ways. One possibility is to identify 
buildings in need of systems recommissioning where the performance is slowly declining over time. This 
would allow responsive recommissioning rather than following a set schedule or only addressing the issue 
once it has become noticeably bad. By recommissioning as needed two scenarios are avoided, allowing a 
building to go unaddressed for a long period of time as well as recommissioning a building on a schedule 
when maybe it did not require it yet. 
 
A second utilization of the auto-benchmark is measuring the impact of known events or changes in a 
buildings structure, systems, or operations. A frequent question is, how much energy did this renovation 
save? Given that weather conditions and other external variables can strongly influence energy 
consumption, one cannot just compare the energy expenditures from two separate time periods. However, 
the auto-benchmark accounts for these variables and provides a stronger point of reference so that a 
building manager can compare the expected energy consumption against the actual. In this way the 
impact of building projects or events within the facility can be accurately measured. (Georgescu, 2014) 
 
A final utilization of the auto-benchmark is in the realm of fault detection. While the energy data we 
receive is static and received in blocks of time, the black box model could be used to predict and 
compared the energy consumption of a building in real time. In this was the model can be used to quickly 
identify buildings that experience sudden changes in their energy consumption due to equipment failure. 
On the UPenn campus steam loop, leaks and failures are not uncommon. Small problems frequently go 
unnoticed for days or even weeks until the issue is visually observed by chance or a review of monthly 
energy consumption reveals an increase, which can lead to large amounts of wasted steam. By identifying 
and addressing these issues quickly, the University could both improve operations and reduce overall 
energy consumption.  
 

WiFi as Occupancy Proxy 
While the black box model has proven effective and reliable in the prediction of energy consumption, it 
achieves best results when considering time frames on the scale of a day or higher, while the single hour 
predictions tend to be less reliable. Although the weather and calendar attribute used are strong predictors 
of energy consumption, especially for heating and cooling, there are many other factors that are not 
considered which have a significant impact on energy consumption on an hourly basis, particularly 
electric. One could consider adding any of these to improve the accuracy of the black box model. 
 
One attribute in particular that has been considered is that of occupancy. Occupancy is roughly 
approximated through the calendar and hour attributes, but especially in an academic environment where 
each semester and the times between can occupy a space very differently. A direct measure of occupancy 
would correlate strongly to the usage of lights and plug loads within a building and could also impact 
heating and cooling demand, depending on the density of occupation. Occupancy, however, it much more 
difficult to directly measure than the weather attributes or calendar, a single set of which may be applied 
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to the entire campus. Instead, occupancy would need to be measured for each building using a system of 
occupancy sensors, which would add a layer of technical, financial, and operation complexity. (Kwok, 
2011) 
 
An alternative to the direct measurement of occupancy would be to track a proxy attribute for occupancy 
that might not provide an exact count for a building, but which could be used to gauge its relative level of 
occupation over time. One such piece of data is already being monitored and can easily be retained and 
collected, and that is the wireless connectivity within a building. Most individuals carry with them 
phones, computers, or other devices which will detect and automatically connect to familiar wireless 
networks. Some individuals may have two devices, some may have none that have access to the network, 
but with a sufficient population, the relative changes in WiFi connectivity should strongly correlate to the 
level of occupation. Due to this potential, the use of WiFi data as a proxy for occupancy levels is one of 
several options being explored for improving the performance of the black box model. 
 

Using a Normative Building Model 
Up until this point the meter data has primarily been used a sieve to find those buildings which are high 
energy consumers when compared to other similar buildings or when compared to their historical 
performance. At best, the analyses coming from the energy signatures and feature importance may 
provide some clues as to the primary influences on a building’s energy consumption, but they cannot 
gauge the impact of potential remedies because they do not consider anything regarding physical structure 
and systems of the actual building. In order to analyze what interventions may be effective in improving 
the energy performance of a building a white box model is required. 
 
In 2018 a normative building model was developed by Pengyuan Shen, then a doctoral candidate at the 
Center for Environmental Building + Design (Shen, Braham, and Yi 2018). Unlike the more complex 
white box models, such as Energy Plus, the normative building model is a low-order white box model, 
meaning that, rather than relying on direct physics based calculations of heat flow between equipment, 
zones, and the exterior, simplified heat flow equations are used. The overall effect is a model which 
requires fewer inputs, is quicker to construct, easier to calibrate, and simple to use. (Neto, 2008) 

 
Figure 6- SimPyBuild Flowchart 
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In 2018 a pilot program to create normative models of six of the worst performing buildings on campus 
so that a suite of energy conservation measures could be evaluated for the energy reductions that could be 
expected and the net present value of those projects. All six buildings came from a list of the thirty 
buildings on campus which showed the greatest potential for energy reductions using the values 
calculated from the benchmark analysis. Rather than specifically choosing the six worst buildings from 
this list, a representative sample was selected to include buildings of different types and scales. The pilot 
program successfully showed the utility of the normative model in evaluating a wide range of energy 
conservation measures based on varying bottom lines, such as maximizing financial saving for 
investment, maximizing carbon reductions to achieve a goal, or combining financial and energy impacts 
to select those that provide the greatest improvement for the fewest dollars.  
 
However, the process of constructing and calibrating the model proved to be slower and more difficult 
than anticipated. As a white-box model a large part of the construction of the model revolves around 
recreating the physical structure of the building. In the normative model the physical building is 
represented as a series of boxes representing zones which are defined by the area and orientation of their 
six sides. Connections between zones are identified by maintaining a list of the surfaces in each zone that 
are shared with another zone and the amount of area that they share. Any surface area which is not 
adjacent to another zone is assumed to be an exterior surface.  
 
In the pilot program, the surface area and adjacency area calculations were being done manually and so, 
by necessity, the zonal breakdown of buildings was simple and relatively formulaic. Each floor would be 
assigned a core zone and a perimeter zone, each of which would be described as simple rectangular cubes 
of equal height. The zones of each floor would be stacked and the adjacencies of the core and perimeter 
zones with each other and with the floors above and below would be calculated. As a result, these early 
zonal models did not reflect the true zones that existed within these buildings and the method by which 
the adjacencies were calculated meant that any changes to the zonal structure would require a lengthy 
recalculation of all affected values across many zones. This decreased the overall accuracy of the models, 
lengthened the time necessary for calibration, and extended the overall time it took to finish a model from 
the desired day or two to weeks. 
 
The pilot program showed that the normative model was capable of being used to provide analysis for the 
potential of specific interventions to reduce energy consumption in a building and so it was decided to 
expand the buildings that were being model to the full list of the 30 buildings on campus that were 
identified as having the greatest potential for reduction, an additional 24 models. To complete this work in 
a timely fashion, a new workflow had to be generated that could address the speed and ease of creating 
the geometric models representing the buildings’ structures. To this end, the following procedure was 
developed to more quickly and accurately generate and evaluate the models. 
 
As the primary weak point in the generation of the models was in determining their zonal structure and 
connections manually, the most significant improvement was the use of the Rhino 3d modelling and 
design software. Frequently used in architecture and engineering, Rhino is well suited to the creation of 
3D geometric models of buildings and their zones. These models can be quickly constructed from scans 
of the floorplans which ensures accuracy of scale and in the calculations of the interconnectedness of 
zones. Further, as all the calculations regarding area and adjacency are done by the program, significantly 
more complex zonal structures can be created beyond the simple core and perimeter zones of the pilot 
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program. The results of these calculations can be exported and saved to .csv files, which are easily read 
by other software. 

 
Figure 7- Example of Zonal Rhino 3D Geometric Model 

The next step was to takes those geometric outputs from Rhino and to combine them with the remaining 
information needed for the creation of the model. This information can be broken down into two 
categories, single point information and schedules. Single point information includes building level data, 
such as the system types or the thermal properties of the envelope, as well as information that could vary 
from zone to zone and thus may have distinct values for each. Schedules represent those variables that 
change over time and are typically in the form of factors which are linked to single point peak values, 
such as peak plug load or occupancy. The schedules would then track the relative plug load or occupancy 
level compared to that peak for a given hour of the day or month of the year. Like the single point values, 
schedules can apply to the entire building or can be customized for each zone type.  
 
All the single point information for the whole building as well as for the zone types is entered into an 
Excel template. The four .csv files and this excel file are then read by a Java program that then writes out 
a single text file containing all the information needed in the Cen format. The Cen file is then read by the 
normative model to estimate the hourly and monthly energy consumption of the building for a year.  
 

 
Figure 8- Flowchart of Data Flow for Normative Model 
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At this juncture, the model is ready for calibration. As the model was run using a weather file from 2018, 
the outputs of the model are compared against the measured energy consumption for that year. (Gutiérrez, 
2021) This is accomplished by adjusting those values which were initially estimated or placeholders in 
the original construction of the model or by revisiting the values which may have changed over time. 
Assuming the building was properly zoned in the creation of the Rhino model, all the changes for 
calibration can be made within the normative model template. The calibration process is described in 
greater detail in the following section. 
 
Once the model has been calibrated, it is possible to evaluate a variety of different energy conservation 
measures (ECMs) by altering the Cen file to reflect the changes that would be enacted. (Li, 2015) This 
process is like the method of calibration in that nearly all the changes are made within the normative 
model input template rather than to the geometric outputs from Rhino. Each ECM is linked to a specific 
value or set of values that inputs should be set to in order to model that scenario. An example would be an 
ECM evaluating the impact of improving the insulation in a wall. R-values of R-13, R-17, R-23, and R-30 
can replace the original R-value for the baseline building (assuming they are an improvement) and the 
model rerun on the newly generated Cen file. The energy expended over a year according to the new 
model can be compared to the results of the old model to determine how each level of insulation 
improvement would decrease energy consumption.  
 
The final piece in this analysis is to determine the cost and net present value of each of the ECMs that was 
modeled. For this project, we were able to consult with one of the primary consulting engineers who 
provides price estimates on renovation and construction work on campus. Using the historical averages 
and estimates provided by this consultant, cost per unit rates were developed for each ECM option. These 
cost per unit rates were then applied to the appropriate values from the building model to estimate the 
total initial and ongoing costs of undertaking that ECM in that building. Secondly, the value of the energy 
that is saved by the ECM is also calculated using the current per unit price of those energy sources. Due 
to volatility in the energy markets over the long term, future prices on energy were not projected. From 
these figures the net present value of each project is determined.  
 

 
Figure 9- Cost Abatement Curve for $/MBtu per ECM 
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This information is represented as a type of cost abatement curve, wherein the results can be displayed 
according to the desired bottom line. Results could be ordered by absolute carbon reductions, NPV, initial 
cost, or more complex measures such as cost per ton of carbon eliminated. This allows a building 
manager or administrator to create a package of interventions for a building to meet any given goal.  
 
Normative Model Pipeline: 

1. Collect scanned / digitized floorplans for each floor 

2. Load each floorplan into Rhino and assign height to create a 3D model of each floor 

3. Identify zones on each floor based on areas that are contiguous and utilized for the same purpose 

a. Zones should be labeled by their use and an index number, i.e. offices_23 

4. Add windows to the Rhino model to match the elevations seen in the drawings 

5. Stack the 3D zonal models of each floor to create a zonal model of the entire building 

6. Export the geometric model from Rhino using plugins Grasshopper and Honeybee 

a. List of zone names and area’s (offices_1, 570; offices_2, 890; circulation_0, 340.…) 

b. List of surfaces, labeled by zone and orientation, and areas (offices_1_floor, 570; 
offices_1_ceiling, 570; offices_1_south, 680; offices_1_east, 475; offices_1_north….) 

c. List of windows, labeled by surface and type, and areas (offices_1_south_glz_0, 90….) 

d. List of adjacent surfaces and area shared (offices_1_ceiling, circulation_2_floor, 570; 
offices_1_south, offices_2_north, 320; ….) 

7. Enter non-geometric properties into normative model input template 

a. Identifying information 

b. Systems information 

c. Set point, occupancy, lighting, and plug-loads, peak loads and schedules 

d. Infiltration and ventilation rates 

e. Thermal properties of opaque surface materials and glazing types 

8. Use the CenCreator to combine four output files from Rhino with the input template 

9. Run the model by providing the Cen file to SimPyBuild, a Python implementation of the 
normative model 

10. Compare the results of the initial run against the measured consumption for the time period 
covered by the weather file provided to SimPyBuild, in this case 2018 

11. Calibrate the model by adjusting values in the normative model input template and recreating Cen 

a. This can be done manually for simple adjustments or algorithmically to find a optimal 
values across many inputs. 

12. Using the calibrated model, record the energy consumption as the baseline scenario 

13. For each ECM to be evaluated, make the corresponding change to the normative model input 
template and create a new Cen file with those changes 
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14. Run the model using each new Cen file and compare the energy consumption against the baseline 
to determine the magnitude of the energy reduction from that intervention 

15. Perform NPV analysis of each option, considering initial and continuing costs along with savings 
from energy reductions 

16. Compare the energy / carbon reductions, initial costs, and NPV to identify a selection of ECMs to 
most closely match the desired outcome 

 

Calibrating a white box model 
The calibration of the white box normative model can either be done manually or algorithmically. 
(Chaudhary, 2016) In both processes a series of adjustments to the model inputs are considered and the 
successive outputs of the model after these changes are compared to actual consumption to find those 
setting which minimize the error observed. While this process could be done at random or according to 
some iteration through the options, typically only a few setting changes will make sense for calibration. 
(Martinez, 2020) This section will describe the best practices for calibration that were discovered in the 
creation of the 30 building models.  

In most cases, it will be optimal to try to calibrate electrical consumption on its own before attempting to 
calibrate the models steam and chilled water results. This is because changes to electrical consumption 
can significantly impact the demand for heating and cooling due to waste heat from electric use itself. If 
electric consumption is low or high consistently throughout the year, then the peak plug-loads and 
lighting-loads should be reevaluated. If the usage is high or low at certain times of the day or months of 
the year, then the usage and occupancy schedules can be adjusted to better reflect the patterns observed in 
the consumption. 

Once electric has been calibrated and the occupancy and usage schedules are determined, the amount of 
heat generated by the population and these loads becomes fixed and the steam and chilled water 
consumption can be calibrated. Typical inputs to adjust to calibrate these outputs would be to confirm the 
set points, consider variations in infiltration and ventilation rates, consider the possibility that the thermal 
properties of the envelope have degraded from the as-built condition, or to adjust the thermal mass of the 
building which will impact its responsiveness to change.  

The following list details the inputs which should or should not be adjusted during the calibration process.  

 

Do Change / Audit  

1. Lighting Loads 

1. Intensity 

2. Monthly / Daily Schedules 

3. Plug Loads 

4. Intensity 

5. Monthly / Daily Schedules 

6. ACH / Infiltration 

7. Monthly Rates 
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8. Occupancy 

9. Rates 

10. Monthly / Daily Schedules 

11. Schedules and Loads by Zone 

2. Internal Thermal Mass 

Don’t Change 

1. Don’t change anything that is well known 

1. Building dimensions 

2. Building system type 

3. Material Thermal Properties 

2. Building Zones 

1. Rezoning model is time intensive and usually not necessary if well zoned to start 

3. Don’t Force Anything 

1. No variable should be altered from default too much without confirmation 

Building Energy Management Plans 
The Building Energy Management Plans were designed to integrate all the energy related data available 
in databases at the University with the outputs of the black box data driven model and the low order white 
box normative model. As they rely on outputs from the normative model, unlike the Annual Energy 
Reports, these were only created for the buildings which had normative models, which were the 30 worst 
performing buildings identified by the meter data and the black box model. These reports contain all of 
the information in the Annual Energy Reports but add significant details on the buildings use by area, 
administration, construction details such as wall sections and systems installed, a history of the 
renovations and remediations, and finally the cost abatement curves generated by the normative models.  
 
A final addition was a review of all this information which discussed the building’s energy performance 
in context of its benchmarks, energy signature, construction and the results of the normative model to 
suggest potential issues with the building along with an evaluation of a suite of corrective measures that 
could be applied. These documents are intended to provide long term planning guidance to administrators 
and building managers who make capital decisions in the facilities and operations sphere.  They could be 
used as a result of a poor review in an annual energy report to identify means of improving performance, 
or they could be consulted whenever renovations or construction are planned for a facility in order to 
align energy saving measures with preexisting disruptions to building operations. 
 
An example of an Energy Management Plan is provided to show the additional analyses and information 
included along with how all of the information included is used at the end to provide an assessment of the 
structure along with an evaluation of the likely issues causing energy performance problems.   
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Introduction 
This document will explain how to generate low order RC thermal models for describing buildings. 
Occupants, air infiltration, and ventilation will not be covered, here, as those are more complex from a 
thermal and mathematical perspective. This can be used to describe single or multizone buildings.  

Model Generation:  
The first step is to come up with a system description. This will depend both on the system being 
described and the measurements that are being taken within the system. The simplest system to describe 
would be a single zone building:  

 
Here, the interior temperature (T_interior) is the dependent variable. The active heating or cooling 
(Q_Heating), solar heat gain (Q_solar), the exterior temperature (T_exterior), and the ground temperature 
(T_ground) are all taken to be independent variables driving the system. A couple of comments, here. It is 
common to model the ground temperature as a constant value corresponding to the steady state ground 
temperature about 10 m below the ground. Additionally, the solar heat gain is often modeled as an area 
(A_s) multiplied by the solar radiation flux (φ_s). This area is sometimes treated as the area of the 
windows on the building and sometimes as an effective area variable corresponding to the absorptivity of 
the opaque building surfaces. The thermal resistances correspond to effective envelope (R_interior, 
exterior) and floor (R_interior, ground) thermal resistances. Finally, each dependent variable, in this case, 
just the interior temperature, has an associated thermal mass (M_interior). This system can be used to 
generate a system equation (directly from a heat balance on this system) of the form:  
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𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗
𝑑𝑑𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑

=
𝐴𝐴𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
∗ (𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) +  

𝐴𝐴𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺

𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺
∗ (𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺 −  𝑇𝑇𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝐴𝐴𝑆𝑆 ∗ 𝜑𝜑𝑠𝑠 +  𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻
= 𝑈𝑈𝐴𝐴1 ∗ (𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) +  𝑈𝑈𝐴𝐴2 ∗ (𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺 −  𝑇𝑇𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝐴𝐴𝑆𝑆 ∗ 𝜑𝜑𝑠𝑠
+ 𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 

This can be algebraically rearranged and rewritten into a matrix equation:  

𝑀𝑀 ∗ 𝑇𝑇�̇�𝚤 =  − 𝑈𝑈1 ∗ 𝑇𝑇𝑖𝑖 + 𝑈𝑈2 ∗ 𝑇𝑇𝑖𝑖 + 𝐴𝐴 ∗ 𝑄𝑄 

 
𝑀𝑀 = [𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] , 𝑇𝑇𝑖𝑖 = [𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖], 𝑈𝑈1 = [(𝑈𝑈𝐴𝐴1 + 𝑈𝑈𝐴𝐴2)], 𝑈𝑈2 = [𝑈𝑈𝐴𝐴1 𝑈𝑈𝐴𝐴2],  

 

𝑇𝑇𝑖𝑖 = �𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺
�, 𝐴𝐴 = [1 𝐴𝐴𝑠𝑠] , 𝑄𝑄 = �𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝜑𝜑𝑠𝑠

� 

 
Here, 𝑀𝑀 is the mass matrix, 𝑇𝑇𝑖𝑖 is the state vector, 𝑇𝑇𝑖𝑖 is the environmental temperature vector, 𝑈𝑈1 is the 

state coefficient matrix, 𝑈𝑈2 is the environmental temperature coefficient matrix, 𝐴𝐴 is the heating 

coefficient matrix, and 𝑄𝑄 is the heating matrix. This model is parameterized by the set of thermal 
parameters, 𝜃𝜃: 

𝜃𝜃 = �

𝑈𝑈𝐴𝐴1
𝑈𝑈𝐴𝐴2

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐴𝐴𝑠𝑠

� 

 
In the multizone case, the system can be described by:  
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Here, there are two dependent variables, T_1 and T_2, corresponding to the two zones. This will yield 
two system equations of the form:  

𝑀𝑀1 ∗
𝑑𝑑𝑇𝑇1
𝑑𝑑𝑑𝑑

=
𝐴𝐴1,𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅1,𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
∗ (𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇1) + 

𝐴𝐴1,𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺

𝑅𝑅1,𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺
∗ (𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺 −  𝑇𝑇1) +

𝐴𝐴1,2

𝑅𝑅1,2
∗ (𝑇𝑇2 − 𝑇𝑇1)

+ 𝐴𝐴𝑆𝑆,1 ∗ 𝜑𝜑𝑠𝑠 + 𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻,1
= 𝑈𝑈𝐴𝐴1,𝐸𝐸 ∗ (𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇1) + 𝑈𝑈𝐴𝐴1,𝐺𝐺 ∗ (𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺 −  𝑇𝑇1) + 𝑈𝑈𝐴𝐴1,2 ∗ (𝑇𝑇2 − 𝑇𝑇1) + 𝐴𝐴𝑆𝑆,1
∗ 𝜑𝜑𝑠𝑠 + 𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻,1 

 

𝑀𝑀2 ∗
𝑑𝑑𝑇𝑇2
𝑑𝑑𝑑𝑑

=
𝐴𝐴1,𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅1,𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
∗ (𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇2) +  

𝐴𝐴1,𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺

𝑅𝑅1,𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺
∗ (𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺 −  𝑇𝑇2) +

𝐴𝐴1,2

𝑅𝑅1,2
∗ (𝑇𝑇1 − 𝑇𝑇2)

+ 𝐴𝐴𝑆𝑆,2 ∗ 𝜑𝜑𝑠𝑠 + 𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻,2
= 𝑈𝑈𝐴𝐴2,𝐸𝐸 ∗ (𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇2) + 𝑈𝑈𝐴𝐴2,𝐺𝐺 ∗ (𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺 −  𝑇𝑇2) + 𝑈𝑈𝐴𝐴1,2 ∗ (𝑇𝑇2 − 𝑇𝑇2)
+ 𝐴𝐴𝑆𝑆,2 ∗ 𝜑𝜑𝑠𝑠 + 𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻,2 

 
This can be algebraically rearranged and rewritten into a matrix equation:  

𝑀𝑀 ∗ 𝑇𝑇�̇�𝚤 =  −𝑈𝑈1 ∗ 𝑇𝑇𝑖𝑖 + 𝑈𝑈2 ∗ 𝑇𝑇𝑖𝑖 + 𝐴𝐴 ∗ 𝑄𝑄 

𝑀𝑀 = �𝑀𝑀1 0
0 𝑀𝑀2

� , 𝑇𝑇𝑖𝑖 = �𝑇𝑇1𝑇𝑇2
�,  
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𝑈𝑈1 = �
�𝑈𝑈𝐴𝐴1,𝐸𝐸 +  𝑈𝑈𝐴𝐴1,𝐺𝐺 + 𝑈𝑈𝐴𝐴1,2� −𝑈𝑈𝐴𝐴1,2

−𝑈𝑈𝐴𝐴1,2 �𝑈𝑈𝐴𝐴2,𝐸𝐸 +  𝑈𝑈𝐴𝐴2,𝐺𝐺 +  𝑈𝑈𝐴𝐴1,2�
�,  

 

𝑈𝑈2 = �
𝑈𝑈𝐴𝐴1,𝐸𝐸 𝑈𝑈𝐴𝐴1,𝐺𝐺
𝑈𝑈𝐴𝐴1,𝐸𝐸 𝑈𝑈𝐴𝐴2,𝐺𝐺

�, 𝑇𝑇𝑖𝑖 = �𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺
�, 𝐴𝐴 = �

1 0 𝐴𝐴𝑆𝑆,1
0 1 𝐴𝐴𝑆𝑆,2

� , 𝑄𝑄 = �
𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻,1
𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻,2

𝜑𝜑𝑠𝑠
� 

 
This model is parameterized by the set of thermal parameters, 𝜃𝜃: 

𝜃𝜃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑈𝑈𝐴𝐴1,𝐸𝐸
𝑈𝑈𝐴𝐴1,𝐺𝐺
𝑈𝑈𝐴𝐴1,2
𝑈𝑈𝐴𝐴2,𝐸𝐸
𝑈𝑈𝐴𝐴2,𝐺𝐺
𝑀𝑀1
𝑀𝑀2
𝐴𝐴𝑆𝑆,1
𝐴𝐴𝑆𝑆,2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

This can be extended into indefinite additional zones. Additionally, as was done in the Mongolia case, the 
envelope can be treated as a zone, yielding the following system description:  

 
Here, there are two dependent variables, T_interior and T_envelope, corresponding to the two zones. This 
will yield two system equations of the form:  
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𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗
𝑑𝑑𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑

=
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖
∗ �𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� +  

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺
∗ (𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺 −  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻
= 𝑈𝑈𝐴𝐴1 ∗ �𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� +  𝑈𝑈𝐴𝐴2 ∗ (𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺 −  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 

 

𝑀𝑀𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖 ∗
𝑑𝑑𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖

𝑑𝑑𝑑𝑑

=
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖
∗ �𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖� +  

𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖,𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖,𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∗ �𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −  𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖� + 𝐴𝐴𝑆𝑆 ∗ 𝜑𝜑𝑠𝑠
= 𝑈𝑈𝐴𝐴1 ∗ �𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖� +  𝑈𝑈𝐴𝐴3 ∗ �𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −  𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖� + 𝐴𝐴𝑆𝑆 ∗ 𝜑𝜑𝑠𝑠 

 
This can be algebraically rearranged and rewritten into a matrix equation:  

𝑀𝑀 ∗ 𝑇𝑇�̇�𝚤 =  −𝑈𝑈1 ∗ 𝑇𝑇𝑖𝑖 + 𝑈𝑈2 ∗ 𝑇𝑇𝑖𝑖 + 𝐴𝐴 ∗ 𝑄𝑄 

 

𝑀𝑀 = �
𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0

0 𝑀𝑀𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖
� , 𝑇𝑇𝑖𝑖 = �𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

�, 𝑈𝑈1 = �
(𝑈𝑈𝐴𝐴1 + 𝑈𝑈𝐴𝐴2) −𝑈𝑈𝐴𝐴1

−𝑈𝑈𝐴𝐴1 (𝑈𝑈𝐴𝐴1 +  𝑈𝑈𝐴𝐴3)�,  

 

𝑈𝑈2 = � 0 𝑈𝑈𝐴𝐴2
𝑈𝑈𝐴𝐴3 0 �, 𝑇𝑇𝑖𝑖 = �𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝐺𝐺

�, 𝐴𝐴 = �1 0
0 𝐴𝐴𝑆𝑆

� , 𝑄𝑄 = �𝑄𝑄𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝜑𝜑𝑠𝑠
� 

This model is parameterized by the set of thermal parameters, 𝜃𝜃: 

𝜃𝜃 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑈𝑈𝐴𝐴1
𝑈𝑈𝐴𝐴2
𝑈𝑈𝐴𝐴3

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑆𝑆 ⎦
⎥
⎥
⎥
⎥
⎤

 

No matter the construction of the model, it will produce an equation of the form:  

𝑀𝑀𝑇𝑇 ∗ 𝑇𝑇�̇�𝚤 =  − 𝑈𝑈1 ∗ 𝑇𝑇𝑖𝑖 + 𝑈𝑈2 ∗ 𝑇𝑇𝑖𝑖 + 𝐴𝐴 ∗ 𝑄𝑄 

Parameterized by 𝜃𝜃. 

Linearization:  
The above equation is a differential equation, which needs to be linearized into a difference equation to be 
numerically computed. Here a midpoint Euler derivative approximation is used:  
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𝑇𝑇�̇�𝚤 �𝑑𝑑 +
Δ𝑑𝑑
2 �

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑇𝑇𝚤𝚤,1̇ �𝑑𝑑 +

Δ𝑑𝑑
2 �

𝑇𝑇𝚤𝚤,2̇ �𝑑𝑑 +
Δ𝑑𝑑
2 �

⋮

𝑇𝑇𝚤𝚤,𝑖𝑖̇ �𝑑𝑑 +
Δ𝑑𝑑
2 �⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑖𝑖,1(𝑑𝑑 + Δ𝑑𝑑) − 𝑇𝑇𝑖𝑖,1(𝑑𝑑)

Δ𝑑𝑑
𝑇𝑇𝑖𝑖,2(𝑑𝑑 + Δ𝑑𝑑) − 𝑇𝑇𝑖𝑖,2(𝑑𝑑)

Δ𝑑𝑑
⋮

𝑇𝑇𝑖𝑖,𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) − 𝑇𝑇𝑖𝑖,𝑖𝑖(𝑑𝑑)
Δ𝑑𝑑 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=
1
Δ𝑑𝑑
∗

⎣
⎢
⎢
⎡
𝑇𝑇𝑖𝑖,1(𝑑𝑑 + Δ𝑑𝑑)
𝑇𝑇𝑖𝑖,2(𝑑𝑑 + Δ𝑑𝑑)

⋮
𝑇𝑇𝑖𝑖,𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑)⎦

⎥
⎥
⎤
−

1
Δ𝑑𝑑
∗

⎣
⎢
⎢
⎡
𝑇𝑇𝑖𝑖,1(𝑑𝑑)
𝑇𝑇𝑖𝑖,2(𝑑𝑑)
⋮

𝑇𝑇𝑖𝑖,𝑖𝑖(𝑑𝑑)⎦
⎥
⎥
⎤

=
1
Δ𝑑𝑑
∗ 𝑇𝑇𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) −

1
Δ𝑑𝑑
∗ 𝑇𝑇𝑖𝑖(𝑑𝑑) 

 

𝑇𝑇𝑖𝑖 �𝑑𝑑 +
Δ𝑑𝑑
2 �

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑇𝑇𝑖𝑖,1 �𝑑𝑑 +

Δ𝑑𝑑
2 �

𝑇𝑇𝑖𝑖,2 �𝑑𝑑 +
Δ𝑑𝑑
2 �

⋮

𝑇𝑇𝑖𝑖,𝑖𝑖 �𝑑𝑑 +
Δ𝑑𝑑
2 �⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑖𝑖,1(𝑑𝑑 + Δ𝑑𝑑) + 𝑇𝑇𝑖𝑖,1(𝑑𝑑)

2
𝑇𝑇𝑖𝑖,2(𝑑𝑑 + Δ𝑑𝑑) + 𝑇𝑇𝑖𝑖,2(𝑑𝑑)

2
⋮

𝑇𝑇𝑖𝑖,𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) + 𝑇𝑇𝑖𝑖,𝑖𝑖(𝑑𝑑)
2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=
1
2
∗

⎣
⎢
⎢
⎡
𝑇𝑇𝑖𝑖,1(𝑑𝑑 + Δ𝑑𝑑)
𝑇𝑇𝑖𝑖,2(𝑑𝑑 + Δ𝑑𝑑)

⋮
𝑇𝑇𝑖𝑖,𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑)⎦

⎥
⎥
⎤

+
1
2
∗

⎣
⎢
⎢
⎡
𝑇𝑇𝑖𝑖,1(𝑑𝑑)
𝑇𝑇𝑖𝑖,2(𝑑𝑑)
⋮

𝑇𝑇𝑖𝑖,𝑖𝑖(𝑑𝑑)⎦
⎥
⎥
⎤

=
1
2
∗ 𝑇𝑇𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) +

1
2
∗ 𝑇𝑇𝑖𝑖(𝑑𝑑) 

 

𝑇𝑇𝑖𝑖 �𝑑𝑑 +
Δ𝑑𝑑
2 �

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑇𝑇𝑖𝑖,1 �𝑑𝑑 +

Δ𝑑𝑑
2 �

𝑇𝑇𝑖𝑖,2 �𝑑𝑑 +
Δ𝑑𝑑
2 �

⋮

𝑇𝑇𝑖𝑖,𝑘𝑘 �𝑑𝑑 +
Δ𝑑𝑑
2 �⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑖𝑖,1(𝑑𝑑 + Δ𝑑𝑑) + 𝑇𝑇𝑖𝑖,1(𝑑𝑑)

2
𝑇𝑇𝑖𝑖,2(𝑑𝑑 + Δ𝑑𝑑) + 𝑇𝑇𝑖𝑖,2(𝑑𝑑)

2
⋮

𝑇𝑇𝑖𝑖,𝑘𝑘(𝑑𝑑 + Δ𝑑𝑑) + 𝑇𝑇𝑖𝑖,𝑘𝑘(𝑑𝑑)
2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝑇𝑇𝑖𝑖,1�����(𝑑𝑑)
𝑇𝑇𝑖𝑖,2�����(𝑑𝑑)
⋮

𝑇𝑇𝑖𝑖,𝑘𝑘�����(𝑑𝑑)⎦
⎥
⎥
⎥
⎤

= 𝑇𝑇𝑖𝑖� (𝑑𝑑) 

 

𝑄𝑄 �𝑑𝑑 +
Δ𝑑𝑑
2 �

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑄𝑄1 �𝑑𝑑 +

Δ𝑑𝑑
2 �

𝑄𝑄2 �𝑑𝑑 +
Δ𝑑𝑑
2 �

⋮

𝑄𝑄𝑒𝑒 �𝑑𝑑 +
Δ𝑑𝑑
2 �⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑄𝑄1(𝑑𝑑 + Δ𝑑𝑑) + 𝑄𝑄1(𝑑𝑑)

2
𝑄𝑄2(𝑑𝑑 + Δ𝑑𝑑) + 𝑄𝑄2(𝑑𝑑)

2
⋮

𝑄𝑄𝑒𝑒(𝑑𝑑 + Δ𝑑𝑑) + 𝑄𝑄𝑒𝑒(𝑑𝑑)
2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡𝑄𝑄1
���(𝑑𝑑)
𝑄𝑄2���(𝑑𝑑)
⋮

𝑄𝑄𝑒𝑒���(𝑑𝑑)⎦
⎥
⎥
⎤

= 𝑄𝑄�(𝑑𝑑) 

Through substitution the differential equation becomes:  

𝑀𝑀 ∗ �
1
Δ𝑑𝑑
∗ 𝑇𝑇𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) −

1
Δ𝑑𝑑
∗ 𝑇𝑇𝑖𝑖(𝑑𝑑)�

=  − 𝑈𝑈1 ∗ �
1
2
∗ 𝑇𝑇𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) +

1
2
∗ 𝑇𝑇𝑖𝑖(𝑑𝑑)� + 𝑈𝑈2 ∗ 𝑇𝑇𝑖𝑖� (𝑑𝑑) + 𝐴𝐴 ∗ 𝑄𝑄�(𝑑𝑑) 

Through some algebraic manipulation, this becomes:  

𝑇𝑇𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) = 𝐴𝐴 ∗ 𝑇𝑇𝑖𝑖(𝑑𝑑) + 𝐵𝐵 ∗ 𝑇𝑇𝑖𝑖� (𝑑𝑑) + 𝐶𝐶 ∗ 𝑄𝑄�(𝑑𝑑) 
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𝐴𝐴 = �
1
Δ𝑑𝑑
∗ 𝑀𝑀 + 

1
2
∗ 𝑈𝑈1�

−1

∗ �
1
Δ𝑑𝑑
∗ 𝑀𝑀 −

1
2
∗ 𝑈𝑈1�  

𝐵𝐵 = �
1
Δ𝑑𝑑
∗ 𝑀𝑀 +  

1
2
∗ 𝑈𝑈1�

−1

∗ 𝑈𝑈2 

𝐶𝐶 = �
1
Δ𝑑𝑑
∗ 𝑀𝑀 + 

1
2
∗ 𝑈𝑈1�

−1

∗ 𝐴𝐴  

This is a system difference equation. Here, 𝐴𝐴 is the autoregressive matrix, 𝐵𝐵 is the environmental 
temperature correlation matrix, and 𝐶𝐶 is the heating correlation matrix. Other linearization schemes can 
be used. Here is a summary of a few options and their benefits:  

1. Forward Euler Approximation:  

a. 𝑇𝑇�̇�𝚤(𝑑𝑑) =  𝑇𝑇𝑖𝑖(𝑖𝑖+Δ𝑖𝑖)−𝑇𝑇𝑖𝑖(𝑖𝑖)
Δ𝑖𝑖

 

b. One of the simplest numerical integration schemes, but it requires very high time 
resolution data to be accurate. 

c. Good for systems the state variable changes much more slowly than the observed 
data timestep.  

2. Reverse Euler Approximation:  

a. 𝑇𝑇�̇�𝚤(𝑑𝑑 + Δ𝑑𝑑) =  𝑇𝑇𝑖𝑖(𝑖𝑖+Δ𝑖𝑖)−𝑇𝑇𝑖𝑖(𝑖𝑖)
Δ𝑖𝑖

 

b. Quite similar to Forward Euler but runs through the data from back to front. Can 
have advantages if there are large changes in the state variable during the first 
several timesteps.  

3. Midpoint Euler:  

a. 𝑇𝑇�̇�𝚤 �𝑑𝑑 + Δ𝑖𝑖
2
� =  𝑇𝑇𝑖𝑖(𝑖𝑖+Δ𝑖𝑖)−𝑇𝑇𝑖𝑖(𝑖𝑖)

Δ𝑖𝑖
 

b. This is actually the arithmetic mean of the forward and reverse Euler 
approximations 

c. Does not require as high time resolution of data as the Forward or Reverse Euler 
approximations, and can handle noisy data reasonably well 

4. Runge-Kutta  

a. This is a family of functions that extend the Euler Approximations (the Forward 
Euler is Runge-Kutta 1). 

b. Runge-Kutta 4 commonly referred to the classic is give by:  

c. 𝑇𝑇𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) = 𝑇𝑇𝑖𝑖(𝑑𝑑) + Δ𝑖𝑖
6
∗ (𝑘𝑘1 + 2 ∗ 𝑘𝑘2 + 2 ∗ 𝑘𝑘3 + 𝑘𝑘4) 

d. 𝑘𝑘1 = 𝐺𝐺𝑇𝑇𝑖𝑖
𝐺𝐺𝑖𝑖
�𝑑𝑑,𝑇𝑇𝑖𝑖(𝑑𝑑)� 
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e. 𝑘𝑘2 = 𝐺𝐺𝑇𝑇𝑖𝑖
𝐺𝐺𝑖𝑖
�𝑑𝑑 + Δ𝑖𝑖

2
,𝑇𝑇𝑖𝑖(𝑑𝑑) + 𝑘𝑘1

2
∗ Δ𝑑𝑑� 

f. 𝑘𝑘3 = 𝐺𝐺𝑇𝑇𝑖𝑖
𝐺𝐺𝑖𝑖
�𝑑𝑑 + Δ𝑖𝑖

2
,𝑇𝑇𝑖𝑖(𝑑𝑑) + 𝑘𝑘2

2
∗ Δ𝑑𝑑� 

g. 𝑘𝑘4 = 𝐺𝐺𝑇𝑇𝑖𝑖
𝐺𝐺𝑖𝑖

(𝑑𝑑 + Δ𝑑𝑑,𝑇𝑇𝑖𝑖(𝑑𝑑) + 𝑘𝑘3 ∗ Δ𝑑𝑑) 

h. Can work with very time resolution limited data 

Each of these classes of solutions is suitable for solving the initial value problem. That is a differential 
equation with a set of initial conditions. In general, the Forward Euler approximation should be sufficient 
for many applications. However, the Midpoint Euler approximation is not that much more complicated to 
implement and can offer higher accuracy, so we tend to favor it.  

Stochastic State Space Description:  
To convert this to a stochastic state space description, a stochastic noise term is added to the system 
difference equation:  

𝑇𝑇𝑖𝑖(𝑑𝑑 + Δ𝑑𝑑) = 𝐴𝐴 ∗ 𝑇𝑇𝑖𝑖(𝑑𝑑) + 𝐵𝐵 ∗ 𝑇𝑇𝑖𝑖� (𝑑𝑑) + 𝐶𝐶 ∗ 𝑄𝑄�(𝑑𝑑) + 𝜀𝜀1(𝑑𝑑) 
Further, the observation equation is written to handle any unobserved dependent variables:  

𝑌𝑌(𝑑𝑑) = 𝐷𝐷 ∗ 𝑇𝑇𝑖𝑖(𝑑𝑑) + 𝜀𝜀2(𝑑𝑑) 
Here, 𝐷𝐷 is an appropriately sized matrix with entries 1 or 0 that reduces the state vector 𝑇𝑇𝑖𝑖(𝑑𝑑) to the 
observed state vector 𝑌𝑌𝑖𝑖(𝑑𝑑). In the case where all of the elements of the state vector are observed (as was 
the case for the Mongolia project), 𝐷𝐷 is the identity matrix. This gives:  

𝑌𝑌(𝑑𝑑) = 𝑇𝑇𝑖𝑖(𝑑𝑑) + 𝜀𝜀2(𝑑𝑑) 
 𝜀𝜀2(𝑑𝑑) is a term to account for measurement noise. This can correspond to the accuracy of the instruments 
used. In the simplest case, with very accurate instruments, this term can be neglected.  

Minimum Error Optimization:  
The error used, here is the root mean square error (RMSE), which is defined by:  

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 =  
1
𝑚𝑚
���𝑌𝑌(𝑑𝑑),𝑌𝑌(𝑑𝑑)��
𝑚𝑚

𝑖𝑖=1

 

Here, �𝑌𝑌(𝑑𝑑),𝑌𝑌(𝑑𝑑)�, represents the dot product of 𝑌𝑌(𝑑𝑑) with itself or the vector norm of 𝑌𝑌(𝑑𝑑). The goal of 
the optimization is to produce a set of parameters, 𝜃𝜃, which minimize the above error, i.e.: 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝜃𝜃(𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅) 
In order to do this an initial guess for 𝜃𝜃, 𝜃𝜃0, is made, and the guess is updated using a gradient descent 
update rule:  

𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝜂𝜂 ∗ ∇𝜃𝜃(𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅) 
𝜂𝜂, here is the learning rate, generally a small value of around 0.001 works well. The optimization is run a 
few hundred thousand times starting from various initial guesses to find a true global minimum.  
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