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1.0- Introduction 

The capacity of technology to capture and store data from utility meters has increased 
dramatically in recent years. However, while virtual mountains of information are being 
collected, in many cases the question of what to do with that data in order to make it useful has 
yet to be answered. The Center for Environmental Building & Design (formerly the T.C. Chan 
Center) has assisted the University of Pennsylvania’s Facilities and Real Estate Services 
(FRES) in the analysis of energy consumption and greenhouse gas production for nearly a 
decade. As energy meters in individual building around campus have come online in recent 
years, this work has sought to answer that core question: now that the data has been collected, 
what can we do with it to increase its utility and value? 

The Center for Environmental Building & Design (CEBD) has been centrally involved in 
the environmental initiatives of University of Pennsylvania since 2005-06, when the first 
Sustainability Plan was prepared. That initial research report concluded that building energy 
consumption was one of the key elements of campus operations to be regulated, and proposed 
both that buildings be individually metered and that a provisional program of building auditing 
begin immediately. For the following two years, performance assessments were conducted 
using a Building Performance Assessment Tool (BPAT) that combined “walk-around” audits of 
buildings with simplified performance simulations, allowing the University of identify buildings for 
renovation and upgrade. That program continued over the following years with more detailed 
systems evaluations and helped initiate a program of continuous re-commissioning. 

Beginning in 2007, when the University President signed the carbon reduction pledge, 
the CEBD provided most of the data analysis and research that was used as the basis for the 
Climate Action Plan 1.0. While this analysis has followed many different paths, the ongoing 
service provided by the CEBD has been the calculation of the current carbon footprint for the 
campus and the projection of that footprint into the future under a variety of envisioned 
scenarios. In the initial action plan the campus was examined as an aggregated whole and the 
reductions possible from each category were estimated over the course of a 30-year scenario. 
This method was used to set initial targets for reductions in the 5-year timeframe once the plan 
had been enacted and to estimate the scale of reductions that would be possible before 2042. 
The built environment of the University of Pennsylvania accounts for approximately 85% of the 
carbon produced by the main campus through the use of electricity, steam, and chilled water. 

After the launch of Climate Action Plan 1.0 in 2009, the CEBD began to explore the 
question in greater depth by breaking down the aggregated campus into individual buildings 
with different degrees of improvements. It created the framework for more accurate projections 
of carbon reductions once meter data becomes available. In 2012 a financial calculator was 
added to the individual carbon projections to evaluate the net present value (NPV) of renovation 
scenarios. Estimates of the cost and effectiveness of each renovation planned within a scenario 
can be calculated; the NPV of the costs and the growing energy savings from each project can 
be estimated as well. The combination of these individual building worksheets and financial 
calculators allows for a more detailed examination of the potential for carbon reductions in the 
built environment.  

All three tools were used together in 2013-14 to develop a more nuanced and realistic 
Carbon Action Plan 2.0, though this was still based mostly on estimates of individual building 
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energy consumption. The 2.0 scenarios considered a range of options for the renovation of 
campus buildings focused around the Century Bond projects and the potential improvements 
that could be achieved by bringing the worst performing facilities up to a contemporary 
standard. The final scenario was developed by assuming that the top 20% of poorly performing 
buildings would be renovated and that they would be brought to current or next generation code. 

The 2015 fiscal year (FY15) was the first for which most of the meters were operational 
for the entire year, making it the first year that this type of research was possible. The meter 
data was aggregated, normalized, and compared against regional benchmarks by building type 
in order to identify those that had the greatest potential for energy reductions. The 40 buildings 
with the most potential for reductions were put forward for further investigation. In order to better 
communicate energy information regarding these buildings an annual report was developed to 
present this data on a building’s performance with as much clarity and information on one page.   

However, there were a number of limitations that hindered the utilization and 
presentation of the gathered energy information. This year’s work has been to overcome those 
limitations and to expand the utility of the meter data that has been collected. The first issue has 
been largely self-correcting and is regarding the quality of the raw data being recorded. As FY15 
was the first year of operation for most of the meters, many experienced calibration issues, 
recorded in the wrong units, or simply had large gaps in the data. By FY16, however, most of 
these issues had been corrected and so the errors encountered were of a smaller scope.  

A second limitation in the previous year’s work regards the means of handling and 
storing the data.  This was largely due to the use of Excel to store the aggregated data used to 
generate the annual energy reports. The size limitations and limited data import capabilities of 
Excel required the raw data to be aggregated as a separate process to generate an output of 
monthly energy consumption for each building, losing the original temporal resolution recorded 
in the raw data. Additionally, the manual importing of data required by this process made it 
prone to transcription errors that complicated the efforts. Further, the data was only available as 
a backup file of the FRES database for the entire year, which made it more difficult to obtain and 
extract the data.  

To overcome these limitations, by switching from Excel to a Filemaker database this 
year the process of obtaining the energy data was streamlined and standardized. Because 
Filemaker is as a true database, it provides better importing and handling of large data sets. 
This allows more information to be captured and the process of collecting and entering it into the 
database to be more automated, reducing the potential for human error. Filemaker was also 
chosen for its ability to generate custom reports, allowing the energy information collected to be 
presented in a variety of different ways depending on the intended audience.  

In addition to overcoming setbacks encountered in the previous year, this year’s work 
sought to improve the utility of the information that has been collected. One method of 
accomplishing this has been through the identification and development of energy metrics most 
pertinent to specific audiences and the generation of reports that are tailored to those metrics. A 
second tactic has been the use of mathematical techniques to correlate energy consumption to 
external and internal variables such as weather data, occupancy schedules, and data from 
SCADA (supervisory control and data acquisition) systems. These techniques provide the 
potential for fault detection, load management, and the overall analysis of a building’s 
performance.  
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2.0- A Streamlined Procedure for Obtaining and Cleaning Data 

The first step in obtaining useful information from the building energy meter data 
gathered by FRES is to simply transpose it into a format from which the data can be easily 
obtained, stored, and manipulated reliably. While this may seem to be a trivial step it provides 
the groundwork for all of the analysis and data visualization that could later take place using this 
data. In order to accomplish this, the energy meter data obtained from FRES must be 
‘cleaned’—or post-processed— to remove outliers and to interpolate missing sections of data. 
Finally, the clean data must be transferred to a database where it can be easily stored, 
analyzed, and formatted for reporting. This year’s work establishes the protocol for 
standardizing and streamlining this effort, and addresses some of the complications 
encountered in the previous year. 

 

 
Figure 1- Data flow and utilization 

 

2.1- Obtaining the Energy Meter Data 

One of the primary roadblocks encountered in FY15 had to do with the initial handling 
and processing of the raw data that was obtained from FRES. To obtain the meter data for 
FY15, the only means of transferring the information was as a backup of the FRES energy 
database that then needed to be physically transferred on an external hard drive due to its size. 
The data was then extracted from this backup file using Python, and machine learning 
techniques were applied to remove outliers and interpolate missing data. This cleaned data was 
then aggregated into monthly consumption of electricity, chilled water, and steam for each 
building and exported to a spreadsheet format. From here it was entered into Excel for the 
generation of the annual energy report and comparison of the energy performance of each 
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building. However, this process was inefficient and introduced several opportunities to introduce 
error into the data.  

In order to improve this process, the CEBD worked with Andrew Zarynow, FRES Energy 
Planning Engineer, to develop a method to regularly provide updated energy meter data from 
the FRES database in a standardized format, and that would require minimal processing before 
being imported into the CEBD database. The data is now provided in the form of a monthly 
comma-separated values (.csv) file, which can be easily transferred electronically without 
undergoing significant reformatting or calculation. Optimally, in the future this process would be 
automated such that new data would transfered every month to the CEBD for analysis, where it 
would be added to the database and reports updated to provide real-time feedback.  

 

 

Figure 2- An example of raw steam use data 

As shown in the above figure, the raw data (in this case, steam usage) is displayed at 
15-minute intervals. The database size is significant, in excess of a million records, even when 
only a single year is considered, and is beyond the capability of Excel to process. Therefore the 
data was concatenated using programming techniques (Python). Standardized date and time 
calendar were used as the main tag to query the energy use data out of the database and 
export them into separate files by building. During the concatenation, missing meter readings 
and zero (null) readings were found in the raw data.  

 

 
Figure 3- A comparative chart illustrating the increase in quality of data from FY15 to FY16 
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Compared to data received from 2015, this year’s data quality is significantly improved, 
particularly in terms of the percentage of null meter readings (See Figure 3). However, several 
buildings reported no electrical consumption, which may meant they are being fed through 
another building and the consumption is misattributed. The percentage in the figure above 
corresponds to the non-null and non-zero data compared to the entire whole dataset. This issue 
of data quality, specifically regarding the buildings with problematic and significantly absent 
data, was discussed at length with FRES. After the concatenation and analysis of data quality, 
the data was aggregated into hourly time steps, which matches the hourly weather data from 
the local weather data vendor. The introduction of the local weather data is given in section 2.3. 

2.2- Removing Outliers from the Raw Data 

The data received from FY15 was quite ‘messy’. Most of the meters had only recently 
been installed, either just before or early in the fiscal year, and as a result much of the earlier 
data collected contains a variety of errors. Many of the meters needed to be calibrated and data 
collected prior to that was unreliable. Many were missing significant durations of data either 
from before they were turned on or as they were switched off to correct issues with the incoming 
data. It was therefore very important to develop methods for identifying areas of faulty or 
missing data and to be able to replace them with an accurate estimate of how much energy the 
building would have been using at that time. This allowed accurate monthly and annual 
estimates of consumption to be determined for each building while relying on as much real data 
as possible.  

By FY16, most of the meters were in their second year of operation, so there were far 
fewer periods of questionable or missing data. However, there will always be error in recorded 
data and it was still necessary to identify outliers and fill in missing data points. This was 
accomplished by using machine learning and mathematical regression to correlate energy 
consumption to external and internal variables that can serve as predictors of building behaviors 
including: weather, solar irradiance, time and date, and occupancy schedules. This section will 
describe the procedure and computational techniques used to identify the bad data points and 
how they were replaced.  

A double MAD (median absolute deviation) method was used to recognize and remove 
outliers in the building energy use data. One of the common methods to identify and remove 
outliers in one-dimensional data is to mark as a potential outlier any point that is more than two 
standard deviations from the mean. However, the presence of outliers is also likely to have a 
strong effect on the mean and the standard deviation, making this technique unreliable. So it is 
recommended to use a measure of distance that is robust against outliers. MAD is good in 
dealing with this kind of problem because it uses the mean absolute deviation from the median. 
However, MAD outlier recognition requires that the data distribution not be skewed or 
asymmetric. It works well with, for example, a symmetric statistical distribution like normal 
distribution, or uniform distribution. For asymmetric distributions, double MAD should be used. 
This is a synergy of two MAD methods: (1) the mean absolute deviation from the median of all 
points less than or equal to the median, and (2) the mean absolute deviation from the median of 
all points greater than or equal to the median. The former is used to calculate the distance from 
the median of all points less than or equal to the median; the latter is necessary to calculate the 
distance for points that are greater than the median. By using this double MAD-based outlier 
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removal method, it is possible to recognize and remove the outliers that exist in the building 
energy use data. The percentage-based outlier removal method, which screens outliers by the 
top percentage of biased points, was compared with the double MAD-based method. 
Percentage-based removal, most of the time, removes too many incorrectly identified outliers 
that are actually valid data points.  

 

 
Figure 4- Comparison of percentile-based and MAD-
based outlier removal methods, Annenberg Center 

Chilled Water 

 
Figure 5- Comparison of percentile-based and MAD-based 

outlier removal methods, Stemmler (Med Ed Bldg) 
Electricity 

 
The red points shown in the figure above are the outliers detected by the two different 

methods. Here the comparison between the two building’s energy use data before and after 
outlier removing are also plotted below. It can be seen that the double MAD based method is 
successful at handling the outliers in the building energy use data. 

 

 
Figure 6- Annenberg Center before outlier removal using 

double MAD method 

 
Figure 7- Stemmler (Med Ed Bldg) before outlier removal 

using double MAD method 
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Figure 8- Annenberg Center after outlier removal using 

double MAD method 

 
Figure 9- Stemmler (Med Ed Bldg) after outlier removal 

using double MAD method 
  

2.3- Hourly Energy Use Interpolation  

The process of outlier-removal creates, in some cases, a significant number of missing 
data points in addition to those that were already missing from the meter readings. In order to 
better reflect the “reality” of the building energy use, the missing data points were filled in by 
using regression models constructed by machine learning algorithms. In this study, a random 
forest regression model was adopted and trained from “good” data points. Then we used the 
trained model to predict how the energy use should behave for the missing data time steps. The 
variables chosen for the regression model mainly include climatic variables like outdoor 
temperature, relative humidity, etc., as well as a scheduling proxy used to emulate the building 
occupancy such as month, hour of day. In this section, the weather data (purchased from a local 
weather data vendor) will be reviewed first and compared with weather data recorded onsite in 
the past. The interpolation results will then be discussed and evaluated. 

2.3.1- Weather Data: Overview 
High resolution and high quality weather data is important for the Penn campus building 

energy data analysis and research since it provides vital, synchronized information of how 
buildings perform in reaction to the exterior environment. A local weather station is installed and 
located on the top floor of Meyerson Hall at Penn Campus serving as the source of local 
weather data. This is the source of the weather data that is used to analyze Penn campus 
energy use in the last years. Here in this report, the weather data from Meyerson Hall is referred 
as Meyerson Weather. However, because of technical reasons, the station was down for almost 
half a year, from the middle of 2015 to the beginning of 2016. Hence, alternative high quality 
local weather data sources are considered indispensable for the research.  

We obtained local hourly weather data from a weather data vendor called 
WeatherSource, who provides high quality weather data at the required temporal and spatial 
resolution according to their zip code. This database is called OnPoint Weather, and is near 
real-time, quality-controlled, error-checked, and gap-filled. More detailed information regarding 
OnPoint can be found on their website: http://weathersource.com/onpoint-weather and a 
product overview can be found at: https://app.hubspot.com/presentations/505859/view/1199611 
?accessId=bcc9c9. More importantly, the climatic variables recorded in the database are nearly 

http://weathersource.com/onpoint-weather
https://app.hubspot.com/presentations/505859/view/1199611%20?accessId=bcc9c9
https://app.hubspot.com/presentations/505859/view/1199611%20?accessId=bcc9c9
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comprehensive, and include solar related data. The following climatic variables are contained in 
the database (in “.csv” format): 

 
time_valid_lcl temperature_air_2m_f temperature_wetbulb_2m_f 

temperature_heatindex_2m_f humidity_relative_2m_pct humidity_specific_2m_gpkg 

wind_speed_10m_kts wind_direction_10m_deg wind_speed_80m_kts 

precipitation_in snowfall_estimated_in cloud_cover_pct 
temperature_dewpoint_2m_f temperature_feelslike_2m_f temperature_windchill_2m_f 

pressure_2m_mb pressure_tendency_2m_mb pressure_mean_sea_level_mb 

wind_direction_80m_deg wind_speed_100m_kts wind_direction_100m_deg 

radiation_solar_total_wpm2 rain_ind freezing_rain_ind 

ice_pellets_ind snow_ind  

 The weather data used is from the weather station located at Lat: 39.9659 and Lon:  -
75.2731, which is in West Philadelphia. Because of the difference in geological location 
between Meyerson Weather data and OnPoint Weather, difference in weather data values is 
anticipated. After acquiring the required weather data, consisting of hourly weather data from 
the beginning of year 2013 to May of 2016, the CEBD conducted comparisons with the 
Meyerson Weather data with respect to three important shared variables: temperature in 
Celsius, relative humidity, wind speed, and solar irradiation. In 2015, only the weather data of 
January to April is compared with OnPoint’s since there is only data logs lasting from January to 
April in 2015 for Meyerson Weather. 

2.3.2- Weather Data: Temperature  
Outdoor dry-bulb air temperature is a very important indicator for building energy 

performance. It was thus important to compare the temperature data from Meyerson Weather 
with that from OnPoint Weather, see figures below. The error bar figures illustrates that the 
temperature data sourced from OnPoint Weather conforms to the pattern of Meyerson Weather 
airport data, but that the temperature from OnPoint is generally lower than Meyerson Weather 
by approximately 1 to 2 degree Celsius, which may be due to the influence of urban heat island. 

2013      2014   2015 

    

Figure 10-  Error bar chart of monthly mean temperature from Meyerson Weather (black) and OnPoint Weather (red) 
from 2013- 2015 
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Jan 2013 Jan 2014 Jan 2015 

   
July 2013 July 2014 Apr 2015 

 
Figure 11- Histogram of hourly temperature data in January from Meyerson Weather (grey) and OnPoint Weather 

(red) 

The histogram indicates that the OnPoint temperature data of each month has a lower 
bound than that of the Meyerson weather station. The Meyerson weather data has higher peak 
in temperature. Generally, the two distributions correspond with each other from year to year 
except that the OnPoint distribution shifts slightly more to the left in the histogram compared to 
the Meyerson Weather data. 

2.3.3- Weather Data: Relative Humidity 
Also compared between the two weather data sources was relative humidity data: 

 

2013 2014 2015 
   
 

Figure 12- Error bar chart of monthly mean relative humidity from Meyerson Weather (black) and OnPoint Weather 
(red) 
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The relative humidity data values from OnPoint are higher compared to the Meyerson 
Weather data because the weather stations are located in different geological locations, thus 
the surrounding urban environments of the weather stations vary as well. 

   
Jan 2013 Jan 2014 Jan 2015 

   
July 2013 July 2014 Apr 2015 

 
Figure 13- Histogram of hourly relative humidity data in January from Meyerson Weather (black) and OnPoint 

Weather (red) 

The histogram indicates that the majority of relative humidity values recorded by OnPoint 
during the winter are around 80%. Meyerson Weather’s relative humidity values are averaged 
around 55%. However, according to the histogram of hourly relative humidity for each month, 
there are some error readings of relative humidity from Meyerson Weather because hardly can 
relative humidity value be zero in outdoor environment. This may be attributed to the 
unstableness of the communication system of Meyerson Weather as well as the onsite meter 
error. Generally, the relative humidity data from OnPoint is more reliable than Meyerson 
Weather’s.  

2.3.4- Weather Data: Wind Speed  
We also compared the difference in onsite wind speed data from Meyerson Weather and 

OnPoint Weather. The mean monthly wind speed recorded by OnPoint Weather is much higher 
than that collected by the Meyerson Weather, which is also true for the standard deviation of the 
wind speed. The difference of wind speed from OnPoint Weather and Meyerson Weather is 
approximately between 4m/s to 5m/s. 

 

 

 



University of Pennsylvania Main Campus: Building Energy Reporting and Performance Analysis 

November 4, 2016  11 

2013 2014 2015 
   

Figure 14- Error bar chart of monthly mean wind speed from Meyerson Weather (black) and OnPoint Weather (red) 

 

   
Jan 2013 Jan 2014 Jan 2015 

   
July 2013 July 2014 Apr 2015 

 

Figure 15- Histogram of hourly wind speed data in January from Meyerson Weather (black) and OnPoint Weather 
(red) 

After plotting the histogram of hourly wind speed in January and July from 2013 to 2015, 
we can find that there is big difference between the pattern of the wind speed from OnPoint and 
Meyerson Weather. Meyerson Weather has lots of zero wind speed readings, which may be 
due to the uncalibrated meter or malfunction of the meter. The difference in the wind speed 
peak from two parties makes sense due to the notably different boundary conditions: one is 
located in suburban area, and the other is in airport where higher wind speed is more often 
witnessed, and the readings are typically taken at a higher altitude. As for the wind data, the 
OnPoint records show more potential for this research as they are more reliable on the accuracy 
of the readings. 
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2.3.5- Weather Data: Solar Irradiation  
The difference in onsite solar irradiation data from Meyerson Weather and OnPoint 

Weather is also compared: 

2013 2014 2015 
   

Figure 166- Error bar chart of monthly mean solar irradiation from Meyerson Weather (black) and OnPoint Weather 
(red) 

According to Figure 16, the pattern of the solar irradiation from OnPoint and Meyerson 
Weather is very similar except that the monthly mean of OnPoint is a little higher than Meyerson 
Weather’s. It makes sense since OnPoint’s weather station is located in an area with less 
density in buildings and populations, which potentially gives more exposure to sunlight. 

   
Jan 2013 Jan 2014 Jan 2015 

   
July 2013 July 2014 Apr 2015 

 

Figure 177- Histogram of hourly solar irradiation data in January from Meyerson Weather (black) and OnPoint 
Weather (red) 

The histrogram shown in figure 17 indicates that the solar irradiation data pattern is 
similar between OnPoint and Meyerson Weather. The Meyerson Weather has higher frequency 
of low irradiation data points, which may be due to that the urban environment where Penn 
locates tends to have more chances to be covered by cloud or by surrounding high rises. 
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2.3.6- Weather Data: Conclusion of Weather Data Quality 
The weather data from Meyerson Weather and OnPoint Weather are compared in terms 

of four important shared climatic variables: outdoor dry bulb temperature, relative humidity, wind 
speed, and solar irradiation. The OnPoint data has the following advantages: 

 It has more useful variables compared with the Meyerson Weather data, such as snow 
indicator, detailed cloud cover percentage. 

 The OnPoint weather data can be a good reflection of Penn campus microclimate. It has 
similar pattern in temperature and solar irradiation with Meyerson Weather. Moreover, in 
regard with relative humidity and wind speed, the readings from OnPoint are more 
reliable considering its error-freeness.  

Thus, it is decided that because the OnPoint Weather data can be served as a proxy for 
local weather data for Penn campus, it is sensible to use this data for building energy use study. 
The hourly weather data points from OnPoint Weather database will be used for campus 
building energy analysis including regression modeling, data mining, mal-data and missing data 
interpolation, etc. 

2.3.7- Data Interpolation Results and Implications  
Once reliable, local weather data has been acquired, the data training and interpolation 

process can begin. The interpolation results of two example buildings, Annenberg Center and 
Stemmler Building, are shown in the following figures: 

 

 
Figure 18- Annenberg Center Chilled Water Interpolated 

Data 

 
Figure 19- Stemmler (Med Ed Building) Steam 

Interpolated Data 

 
The interpolation results shown above indicate that this procedure works well to fill in 

missing data points and reflect the reality of the building’s energy use level at each hourly time 
step. This process was carried out for all end-use types of buildings that had previously missing 
data points, specifically in cases with 40% or more missing data points. This cutoff was 
established because interpolating the data of the buildings with too much missing data will make 
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the prediction biased, as not enough training data would be available to build a reliable 
regression model.  

The regression model that was trained for each building can also be evaluated for the 
importance of the different driving forces for energy use of each building. As shown in the 
following figure, for most of the buildings, the driving force for chilled water and steam use is 
unambiguously outdoor temperature. However, for electricity use, it is rather hard to pinpoint 
which schedule proxy is dominant. In some instances, one particular schedule proxy may work 
very well, for example regarding electricity use of Chem-58; but for the electricity use of BRB-II, 
the regression model does not identify a dominant factor driving electricity use.  

 

  

BRB II_CHW BRB II_STM 

  

Chem-58_ELEC BRB_ELEC 
 

Figure 20- Feature Importance of Predictors for Energy Use 

The question of finding a good proxy for building occupancy schedule is important for 
regression model construction in the future because it will improve prediction power of the 
regression model and serve as an indicator of strategies for energy reduction. Preliminarily, the 
CEBD has identified that network/WiFi activity shows a strong correlation with electricity use 
data, which indicates great potential for using it as an accurate proxy for building occupancy. 
The following figure shows the WiFi client connection data for a single day in September for 
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BRB-II. Though the CEBD has been provided only with network activity reports (shown below), 
and not yet obtained a usable dataset from the ISC (Information Systems and Computing) 
department at Penn, it is believed that this data could significantly facilitate building energy use 
prediction, fault detection, and diagnosis in our future work. 

 

Figure 21- Network Activity Graph from BRB II with Overlaid Electricity Use (yellow) 

2.5- The Energy Consumption of the Penn Buildings 

Although a large amount of metered data from individual buildings has now been 
gathered, for many years only their monthly consumption of electricity was determined, while a 
a few buildings were individually metered for the consumption of steam and chilled water. The 
recent initiative to introduce steam and chilled water metering to the majority of the buildings 
served by these loops has dramatically changed that situation and for the first time has begun to 
make it practical to consider scenarios that track individual buildings and renovations rather than 
campus totals and broad assumptions for growth and change. 

Once all the data has been cleaned and processed, it is possible to paint a complete 
picture of the energy consumption for each building on the University of Pennsylvania campus. 
This is an important first step in determining where to focus energy reduction efforts as it 
identifies the largest consumers with the greatest potential for energy reductions. However, this 
information is insufficient in truly identifying the worst performing buildings as it does not 
account for the physical size of the building, the purpose of the facility, or the scale of the 
activities occurring within its walls. Larger facilities will naturally use more energy than smaller 
ones, as will buildings with higher occupancy spaces, but that does not necessarily imply that 
they are using that energy less efficiently. While the magnitude of energy consumption does 

Electricity use  
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provide an initial starting point for the identification of the greatest potential energy reductions, it 
is insufficient on its own.  

 

 
Figure 22- Total energy consumed per building for Top 40 Consumers, FY15 and FY16 

Figure 20, above, shows the energy consumption for the highest energy consuming 
buildings on campus for which meter data was available and ranks them from largest to smallest 
consumer. Data for FY15 and FY16 was included, along with a benchmark target for 
consumption. This chart shows the 40 largest consumers of energy on campus which between 
them account for 80.3% of the campus’s total energy consumption, even though they only 
represent approximately 20% of the buildings. These buildings represent a large majority of 
energy consumed on campus. In addition to the current ranking by magnitude of consumption, 
this chart also displays how the consumption of these buildings has changed from FY15. For the 
most part this change was a modest increase or decrease, however a few buildings show a 
dramatic change, which for the most part can be explained by irregularities in the data, usually 
the FY15 data, rather than an actual dramatic change in consumption. This is most obvious in 
Harrison House, which shows a huge increase that defies logic given the nature of the structure. 
Indeed this increase can be traced to a meter problem in a single month in FY16 which could 
not be corrected and so this building was removed from consideration for this year.  
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Additionally, as mentioned previously, several buildings did not have any reported 
electrical consumption and it is not yet clear if this use is not being metered or if it is coming 
through another building and being attributed to the other building. This may also be occurring in 
a slightly different way with buildings that are physically connected, in which caseone building 
may be fed entirely from the steam or chilled water meters in another building or they may 
simply share conditioned spaces, making it impossible to determine how much heating or 
cooling was used by each space. Further investigation and discussion with FRES will be 
required to determine if each meter is being correctly assigned to a space and what 
consumption is not being metered. If shared consumption cannot be disaggregated then the 
spaces may need to be analyzed as one combined unit. 
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3.0- Benchmarking and Comparison of Building Performance 

The work described until this point has largely centered on understanding how much 
energy is used by individual buildings on campus, and a great deal of work is involved in setting 
up the process by which data is obtained from the meters and cleaned to remove outliers and 
gaps. This section describes one method commonly used to help understand what that energy 
usage actually means in terms of the performance of the building. Benchmarking is a practice 
where the consumption of a building is compared against the average performance of similar 
buildings or where the current energy consumption of a building is compared against its own 
historical usage. This provides a much better gauge for how well a building is performing 
compared to simply looking at the magnitude of consumption. 

This section describes how to approach two of the basic questions we face when 
evaluating energy performance: how much are we using and how much should we be using 
given the weather and occupancy conditions? While we can determine how much energy each 
building is using, how that compares to their previous performance, and how the buildings rank 
in terms of absolute consumption, these factors do not answer questions such as how much 
energy each building could or should be using. This is important because the energy used by a 
building will vary greatly depending on the size and purpose of the building. Inherent differences 
in the uses and equipment found in different categories of buildings will lead to significantly 
different ranges of energy consumption. The difference between the target level and the actual 
consumption of the building forms the basis for generating an ordered list of buildings with the 
greatest potential for savings via renovation or other changes. This section will describe how 
these benchmarks for each building can be generated. 

3.1- External vs. Internal Benchmarking 

Benchmarking typically focuses on either a comparison to other similar buildings or a 
comparison to its own historical performance. Both methods are useful in different situations. 
Creating external benchmarks based on the performance of other similar buildings allows the 
data consumer to compare the performance of a building to the typical performance seen in 
similar structures. To create a valid comparison, the consumption of all the buildings is typically 
normalized to account for variables that will intrinsically affect the consumption of a facility due 
to its scale. For example, if comparing two buildings that serve the same purpose but are of 
different sizes it would be natural to assume that the larger building will use more energy.  

One common factor for normalization is the area of the buildings being considered, 
which is typically useful if the density of the activities taking place within the structures are 
similar. But a variety of situations can arise that makes the use of area for normalization less 
appropriate. For example, if comparing office buildings, it would be important to consider 
whether they are located in urban or suburban locations. As space becomes more expensive in 
urban areas, offices may increase their density. While some energy uses will scale, to some 
degree, relative to the physical size of the facility, others will be tied to other factors such as 
number of employees or customers served. Figure 21 shows how the choice of factor for 
benchmarking of carbon emissions affects the evaluation of different segments of the Penn 
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facilities by considering both area and employee normalization. It is always important to 
consider how energy consumption should be normalized when developing benchmarks.  

 
Figure 23- Comparison of energy consumption normalizing factors for UPenn campuses 

Creating performance benchmarks based on the normalized energy consumption of 
similar structures provides a relatively quick but reliable method for determining the level of 
performance of a building compared against its peers. Depending on the data available, 
benchmarks are often a single target value representing the average of similar real buildings or 
it is increasingly represented as a statistical distribution. The latter allows a building operator to 
determine whether their building falls within an acceptable range of performance. This can be 
useful when a category of building has a wide range of energy consumption that could be 
considered normal. 

Ultimately this technique is limited by the inherent differences that exist in the 
construction, systems, and usage of buildings, even when they are utilized for the same broad 
purpose. While large databases of building energy use exist that can be filtered and queried to 
provide information about ever-more specific subgroups of buildings, as the criteria for what can 
be included narrows the number of buildings falling within that defined category drops rapidly. 
As a result, these benchmarks are a compromise between matching the building construction, 
location, systems, and usage as closely as possible while maintaining a large enough pool of 
buildings within that grouping to be able to perform statistically valid analyses. As the collection 
and storage of building utility consumption is increasingly made more available in some form to 
the public, this benchmarking method should continue to improve.  

An alternative approach to external benchmarking is internal benchmarking, where the 
building’s energy consumption for a given period is compared against its own historical 
performance rather than the performance of other buildings. This type of benchmarking is very 
useful for tracking the changing performance of a building although it cannot indicate whether 
the building is performing well overall, only if it has improved or gotten worse. This type of 
benchmarking is therefore especially useful when trying to gauge the effectiveness of energy 
conservation programs, interventions, and renovations.  
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There are several different methodologies for developing internal benchmarks that are 
largely dependent on the level of data that is available for analysis. At the broadest level, 
internal benchmarking can be accomplished by comparing the energy consumption during one 
period against the energy consumption of a comparable period. Simply comparing the energy 
consumption for one year against the previous year would be the simplest version, but other 
temporal resolutions are equally valid for comparison.  

However, the simple comparison effectively combines changes due to a wide variety of 
factors: weather, singular events, renovations, and depreciation. As a result, internal 
benchmarking often seeks to account for these other variables so that the expected 
performance during a given time period can be adjusted to account for its historical correlation 
between energy consumption and variations in those variables. Regression analysis can be 
used to identify the mathematical correlation between a wide set of variables and energy 
consumption from past behavior. By applying that correlation to the value of those variables 
during a current or future period, an estimate of expected energy consumption can be 
generated. Thus, any deviation from that expected usage can be attributed to an actual change 
in the energy performance of the building rather than a difference in weather or other external 
variables.  

Internal benchmarking is a powerful tool for understanding how building energy 
consumption and performance change over time, but this method faces some limitations. While 
comparisons between periods of time can be made using data that is only available in large 
temporal increments, this tends to result in data with a limited number of individual data points. 
This makes regression analysis impossible and therefore removes the ability to account for the 
influence of other variables on the energy consumption of a building in one time period 
compared against another. Preferably, reliable data for both energy consumption and the 
correlating variables should be available at a frequency such that thousands of data points 
could be collected for analysis, requiring hourly readings or daily readings over an extended 
period. This often is not feasible in some applications. 

3.2- FY16 Benchmarks  

One of the primary goals of this work is to gauge the potential for energy use reduction 
of the University of Pennsylvania central campus. While prior attempts to forecast this potential 
over the course of 30 years were limited to generalized assumptions about the changing nature 
of the campus built environment or effectiveness of potential interventions on a broad scale, the 
recent access to meter data provides a wealth of new detail. This extends the focus on 
individual buildings established in the Carbon Action Plan 2.0, and facilitates more precise 
strategies, targeted to achieve the anticipated reductions.  

In forming the Climate Action Plan 2.0 one of the primary tasks was to revisit the original 
carbon reduction goals that were set in 2009 and to determine if those goals were still 
appropriate and accurate. To accomplish this task different scenarios were tested of specific 
renovations that would upgrade a select percentage of the worst-performing buildings to a 
contemporary code standard. Four separate scenarios were developed using benchmarks 
based on the renovation of buildings to current or next-generation ASHRAE 90.1 building code 
between the years 2016 and 2042.  
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This technique had several limitations that reduced the ability to gauge the potential 
energy reduction that could be exacted from specific buildings. In addition to a paucity of 
metered information of the actual energy used by buildings, the targets were limited in two 
ways. Firstly, the targets were very specific, indicating potential without providing additional 
information regarding the range and distribution of normal energy consumption by buildings of 
that type. So, while the single point target value provided by ASHRAE offered a general guide to 
the potential savings, it did not provide sufficient information to truly indicate how well the 
building is performing, just that it could do better. Additionally, EnergyPro, the tool that was 
utilized to generate the ASHRAE targets, is based on many levels of generic assumptions that 
do not necessarily fit campus buildings, and occasionally produced unreasonable results.  

This year’s research focused on a more dynamic benchmarking method that placed 
building consumption in a larger context than the single number provided by the ASHRAE code 
target. In previous years, some individual metered data was available, but the rest was 
estimated. This provided figures for the actual consumption of energy by each building that 
could be compared to different kinds of benchmarks. Energy simulation models, EnergyStar 
targets, and the ASHRAE 90.1 model code have all been used, but they each have their 
limitations.  

Detailed simulations are very time consuming, while streamlined simulations like the 
EnergyPro package used to establish ASHRAE 90.1 values are inherently generic. The 
approach used by EnergyStar is statistically based, but is only available for a few building types 
and includes several internal corrections to emphasize the performance of the building 
envelope. The new benchmarking process we developed uses the longstanding Commercial 
Building Energy Consumption Survey (CBECS) database, the more recent DOE Building 
Performance Database (BPD), and the growing LABS21 database of laboratories. These 
databases all maintain normalized building energy consumption data categorized per an array 
of features and provide built-in statistical information regarding selected data.  

 

 
Figure 24- Example of building energy consumption distribution from Building Performance Database 
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The Building Performance Database (BPD) was used to identify hundreds or thousands 
of buildings in our region for each building type, excluding laboratories for which there are too 
few for statistical analysis. These were then statistically analyzed to establish the range of 
normal levels of energy consumption for each building type. As a basic benchmark, we chose to 
use the range of consumption from the 25th (better performers) to the 75th (worse performers) 
percentiles. Figure 23. The 25th percentile in kBtu/sqft for each category was established as the 
working target of potential energy consumption for each building type. Data for laboratories was 
gathered from the Labs21 database and was used to generate similar ranges of normal building 
behavior. The target was further subdivided into heating (steam), cooling (chilled water), and 
other power consumption (electric) based on the average breakdown of energy usage for each 
category of building found in the CBECs database. These results are displayed in Figures 25 & 
26. 

 

Figure 25- Format for displaying normalized building energy consumption against benchmark based on distribution of 
similar buildings 

These category-based energy consumption targets were multiplied by the square 
footage of each building to establish the total target consumption for each building. These 
targets are compared to the actual utility consumption for each building in order to calculate 
their individual potential savings. This provides the basis for an ordered list that can be utilized 
to identify and prioritize buildings with the greatest potential for energy reduction for renovation.  
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Basing the benchmarking targets on statistical data removes a great deal of the 
uncertainty found in previous iterations of this research. Rather than defining a single value as 
the desired level of energy consumption, the range of normal behaviors defined around the 
median creates a more informative perspective of how each building relates to other buildings of 
its type. While the 25th percentile data point is used as a numerical goal for each building, 
considering the actual consumption in relation to the normal range provides a more complete 
picture of the potential for energy savings. The numerical target is useful for the purposes of 
ranking, but it is very helpful in understanding how far a campus building departs from the norm, 
and highlights the difficulties for improvement. A building that is well outside the normal range 
can likely be improved in many ways, while a building that is within the range will need a more 
detailed investigation to evaluate potential improvements. Both kinds of buildings may be 
identified as having great potential for reductions, because although some very large consumers 
fall within the normal range, even a small improvement can yield large savings. 

 

 

Figure 26- Format for displaying actual consumption of building against target based on 25th percentile of benchmark 
distribution 
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  Mean 25% Median 75% Notes 

Education: University 85.5 50.1 79.8 104.2   
Education: Uncategorized 51 21.2 47.7 71.8   

Food Service: Rest./Caf. 258.3 147 294.2 659.9 Region expanded to entire US 

Food Service: Uncategorized 258.3 147 294.2 659.9 Region expanded to entire US 

Laboratory: Physical 0-25 241.1 126.6 194.5 279.1 Region expanded to entire US 

Laboratory: Physical 25-50 248.9 166.1 213.9 296.8 Region expanded to entire US 

Laboratory: Physical 50-100 285 128.1 253 407.7 Region expanded to entire US 

Laboratory: Chem/Bio 0-25 266 147.3 247.5 336.7 Region expanded to entire US 

Laboratory: Chem/Bio 25-50 362.8 241.2 333.8 476.5 Region expanded to entire US 

Laboratory: Chem/Bio 50-75 361.7 247.1 335.8 484.5 Region expanded to entire US 

Laboratory: Chem/Bio 75-100 445.8 285.8 424.3 595.9 Region expanded to entire US 

Lodging: Dorm/Frat 66.8 28.3 55 74.6   
Lodging: Uncategorized 76.6 47.8 71.4 98.4   

Medical: Inpatient 226.3 172 219.6 267.7   
Medical: Outpatient 114 46.1 105.1 156.9 Region expanded to entire US 

Offices: Admin/Prof. 98 57.9 71.5 101.6   
Offices: Uncategorized 98 57.9 71.5 101.6   

Public Assembly: Theatre 92.5 78.2 92.5 135.6 Region expanded to entire US 

Public Assembly: Library 79.8 53.4 75.7 98.2 Region expanded to entire US 

Public Assembly: Recreation 113 62.7 96.5 168.6 Region expanded to entire US 
Public Assembly: Social / 

Meeting 81.9 48.7 69.9 97.1 Region expanded to entire US 

Public Assembly: Uncategorized 89.3 28.3 63.1 104.1 Region expanded to entire US 

Service: Uncategorized 103.8 60.5 91 126 Region expanded to entire US 
Figure 27- Statistical data from BPD and Labs21 on building energy usage by category 

 

  Total Heat Cool %Elec %Heating %Cooling 

Education: University 83.1 39.4 8 43% 47% 10% 

Education: Uncategorized 83.1 39.4 8 43% 47% 10% 

Food Service: Rest./Caf 258.3 43.1 17.4 77% 17% 7% 

Food Service: Uncategorized 258.3 43.1 17.4 77% 17% 7% 

Laboratory: Physical 249.2 91.8 18.6 56% 37% 7% 

Laboratory: Chem/Bio  249.2 91.8 18.6 56% 37% 7% 

Lodging: Dorm/Frat 100 22.2 5.9 72% 22% 6% 

Lodging: Uncategorized 100 22.2 5.9 72% 22% 6% 

Medical: Inpatient 249.2 91.8 18.6 56% 37% 7% 

Medical: Outpatient 94.6 38.1 7.2 52% 40% 8% 

Offices: Admin/Prof. 92.9 32.8 8.9 55% 35% 10% 

Offices: Uncategorized 92.9 32.8 8.9 55% 35% 10% 

Public Assembly: Theatre 93.9 49.7 9.6 37% 53% 10% 

Public Assembly: Library 93.9 49.7 9.6 37% 53% 10% 

Public Assembly: Recreation 93.9 49.7 9.6 37% 53% 10% 

Public Assembly: Social / Meeting 93.9 49.7 9.6 37% 53% 10% 

Public Assembly: Uncategorized 93.9 49.7 9.6 37% 53% 10% 

Service: Uncategorized 77 35.9 3.8 48% 47% 5% 
Figure 28- Statistical data from CBECs on breakdown of building energy usage by category 
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Figure 27, below, shows the same data as Figure 20 in Section 2, however it has been 
sorted differently. Rather than ordering the top 40 buildings by magnitude of energy 
consumption, it compares the FY16 total consumption to the energy that would be used by the 
building if it operated at the energy efficiency achieved by the best 25th percentile of similar 
buildings within the region. This difference can be considered as an estimate for the potential 
improvements that could be made to the building via renovation and recommissioning.  

 

 

Figure 27- Top 40 campus buildings ranked by potential energy savings, kBTU/yr 
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Figure 28- Top 40 campus buildings ranked by energy intensity, kBTU/sf 

 
Figure 28, above, shows similar data, except it has been normalized to display the 

energy intensity of each building and sorted to show the 40 buildings with the greatest energy 
intensity. This is often more useful than simply considering magnitude, as buildings with large 
differences in energy intensity compared to their potential targets may have more cost effective 
options for renovation compared to buildings with a higher overall consumption or  magnitude of 
potential savings. Figure 29, below, shows the same data only ordered to show the 40 buildings 
with the greatest difference between the current energy intensity and the 25th percentile target of 
best performing building a within that category of facility. This shows where the some of the 
most cost effective changes may be possible. 
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Figure 29- Top 40 campus buildings ranked by difference in energy intensity between actual and 25 percentile target, 
kBTU/sf 
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4.0- Energy Reporting 

4.1- Data Visualization 

A critical step in energy reporting is to visualize the energy and performance data in 
forms useful to audience using them. Beginning with the central question, “How can we obtain 
the most information from the wealth of new building energy consumption data?” it is just as 
important to deliver and visualize it in a useful format as it is to collect and process it. Before 
considering methods of data presentation and utilization, it was necessary to simultaneously 
catalog the possible end-users and what their needs might be, particularly with respect to the 
rate at which the data would be needed (See Figure 30). Depending on the needs of the 
reporting audience, data delivery and visualization can range from annual reporting to real-time 
delivery. The visualization methods considered are data dashboards, spatial representation of 
data, and data visualization for decision making.  

 

Figure 30 - Identification of Possible Reporting Audiences 

The most common method for displaying large quantities of data reported from multiple 
entities, such as in a campus-wide or city-wide setting, is the data dashboard (See Figure 31). 
Typically, due to the technical, as well as data security requirements, the data displayed in this 
manner is static. Generally, this data is visualized in charts, tables, graphs, and in 2D on a web-
based mapping platform, which allows users from varying skill-levels to interact with the 
dashboard by making filter queries and selecting individual items to display detailed information.  
In terms of the complexity of displayed information and user interaction, the dashboard is the 
simplest platform for visualizing data such as energy consumption. This example provides a 
path of least resistance toward connecting a wide variety of users to at-a-glance summary 
visualizations, which are particularly helpful to quickly spotting outliers and anomalies, as well 
as more detailed information about specific buildings.  

Spatial representation of building consumption data is also particularly significant in 
understanding a building, its type, use, and other distinctive characteristics within its immediate 
and broader contexts. While reports of static data are capable of underlining a particular 
building’s performance, within the larger bracket of similar building types as well as within the 
context of voluntary standards such as ASHRAE 90.1, they typically fail to identify trends 
spatially. And due to their static nature, such reports are incapable of any manner of forward-
looking trend prediction—a feature that, if implemented, can mean the difference between a 
visualization tool and decision-making tool. Data visualization for decision-making is not a novel 
concept, but with the era of big data and high-resolution spatial data models the notion of data 
visualization for decision-making has taken on a greater intensity.  

 

Annual 

•Dean 

•Vice Dean of 
Administration 

Quarterly 

•Dean 

•Vice Dean 

•Building Manager 

•Facility or Operations 
Director 

Monthly 

•Facility or Operations 
Director 
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Real-Time 

•Facility or Operations 
Director 

•Building or Area Manager 
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Figure 31- Example of a data dashboard from UC Davis 

The ability for a data visualization technique to be both spatial and dynamic is therefore 
paramount in transforming a simple visualization platform into a tool for decision making. These 
two attributes permit flexibility in potential user interaction while exploiting the same database of 
information. One example of such a platform is currently being developed at the University of 
Florida under the supervision of Ravi Srinivasan, PhD. The d-SIM—or dynamic SIM—platform 
was provisionally supplied with data from the Penn Campus (See Figure 32) is an attempt to 
bridge the gap between raw, live data feeds, such as those that are output from BMS (building 
management system), BAS (building automation system), and SCADA systems and their 
practical delivery to the end user to aid in making real-time decisions. This integrated approach 
aims not only to visualize building performance and act as an auditing method but to, more 
importantly, model, simulate, and visualize “what-if” scenarios to virtually implement possible 
strategies for energy reduction. Furthermore, the tool is capable of operating at the building, 
campus, and city scale, which paves the way for truly integrative environmentalism across the 
board. The ultimate goal of such a platform is the early integration of these various forms of data 
analysis into the decision-making process regarding the operation and maintenance of buildings 
and their environment.  

 
Figure 32 University of Pennsylvania Main Campus in the Dynamic-SIM platform, University of Florida School of 
Construction Management 
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In the field of building diagnostics the use of infrared cameras for documenting and 
visualizing actual, physical energy loss in the form of heat is a widely used auditing technique. 
Even at low resolution, having the ability to combine this data with metered building 
performance data allows for a comprehensive snap-shot of a building’s environmental behavior. 
It is not implausible to imagine the integration of thermal data, BIM (building information 
modeling) data, energy consumption, performance data, and machine-learning protocols for 
real-time building diagnostics and fault detection. At the very minimum, supplemental IR data is 
critical for catching a glimpse of otherwise unseen or misunderstood data present in a SCADA 
database. For instance, even with building performance data, utility consumption data, 
construction information, and occupancy schedules it is often possible to miss critical factors 
such as envelope heat loss. This can result in a building hemorrhaging heat through single pane 
windows, or at slab-wall junctions (See Figure 30).  

 

   

   
Figure 29-  IR Images of Meyerson Hall taken at 930am, showing sections of uninsulated wall leaking heat  
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4.2- The Database Energy Reports 

One of the most significant tasks of this year’s work was to develop a database structure 
that could both house the energy meter data as well as produce informative reports that could 
assist in the performance evaluation of individual buildings and in the decision-making process. 
Databases are inherently better at storing and analyzing very large data sets and, with more 
than 3.5 million data points from meter readings each year, Excel was no longer capable of 
efficiently examining the full data set, instead requiring significant aggregation and manual 
importation. In addition to better analytical and data storage capabilities, databases are also 
highly flexible in terms of reporting energy data, allowing for custom reports to be quickly and 
simply generated to accommodate a wide variety of needs. 

The structure of the database used considers two types of data for campus buildings: 
single data point information and data series. The single data point information consists of 
information on the building, such as the building’s name, area manager, area, envelope type, 
etc. The data series information consists of building information that may have multiple values. 
This is primarily the energy meter information, which consists of thousands of data points every 
year per building for each utility type. Also included is information like notes on the buildings’ 
history, each of which would be stored as a separate record.  

 

 
Figure 30- Tables defined in Filemaker database 

The single data point information serves as the basic organizer of the database, with a 
single record for each building containing most of the information collected about it. Calculation 
fields in those individual building records search through the data series information to 
aggregate energy information into single data points calculating energy consumption for specific 
periods or time or for normalization and benchmarking purposes. This aggregation can occur 
based on a schedule or it can be on demand as new energy data is made available. The results 
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of the aggregation are stored such that they do not need to be recalculated each time they are 
viewed if no new information was made available.  

 

Figure 31- Defined relationships between tables determine how information on each relates for automatic filtering and 
aggregation 

Once the basic structure of the database was developed, the cleaned and interpolated 
energy meter data was imported and several layouts were created to display varying levels of 
information. The remainder of this section will briefly discuss these reports, but they represent 
only a portion of the potential forms the information collected could be displayed. Ultimately the 
goal is to create a database that is web accessible, hierarchically password protected that could 
be used to easily navigate through multiple layers of information tailored to specific audiences. 
In addition to the annual reports that have been generated in the past, it is possible with this 
system to call upon a wider variety of analyses that are specifically tuned to the questions being 
asked as well as to the ones that haven’t even been asked yet.  

Figure 33, below, shows a version of an annual energy report that was generated using 
the CEBD database. This report was developed as a proof of concept to illustrate the ability of 
the Filemaker program to generate the same quality reports previously generated using Excel. 
This was tested by recreating the annual energy report, which was one of the final deliverables 
from the previous year. This version improves on the previous year by being increasingly 
flexible in terms of the speed at which the reports can be generated as well as being more able 
to easily query specific time frames for examination rather than being limited to a single fiscal 
year.  
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Figure 32- Example of an annual energy report 
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Further report layouts were developed to demonstrate the potential for customized 
reporting of energy information based on specific audiences or energy related queries. Figures 
34 and 35 below show two additional reports that were created. Figure 34 shows a report that 
provides a quick summary of a building’s energy usage. In addition to the basic building 
identification information and construction details, this report provides an annual summary, by 
fiscal year, of the total and normalized energy consumption in the building. This information is 
displayed graphically at an hourly resolution for the date range selected, and provides a portal 
showing the data points in table form. This layout is useful when querying a particular time 
period within the context of an entire year’s consumption.  

 

 
Figure 33- Example of a building summary report for a custom time frame 

Figure 35 shows a broader overview of the building’s energy consumption, providing 
aggregated energy information at the monthly level for all three utilities monitored in addition to 
the total. The monthly aggregation provides finer detail of how the building is using its energy 
based on the time of year. This is a level of resolution that would overwhelm the causal viewer 
and that the annual summary does not provide. Again, the data is provided in both table form as 
well as a chart.  

It is important to note that these are just a sampling of the reports and analyses that the 
CEBD database can develop. One task that has already begun is a series of discussions with 
the building operators and decision makers regarding the information that would be useful to 
them in regards to energy consumption. The intent of these discussions is to ultimately create a 
hierarchical series of report layouts that would be accessible categorically based on end-user. 
Each report layout would contain useful information and analyses tailored to these specific 
audiences. Some possibilities include: views for internal benchmarking with estimates of 
expected usage versus actual usage; spatial data overlaid on maps; suggestions for potential 
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issues present in individual buildings. The combination of these reports and layouts can serve 
as the primary portal for all energy and building information. 

 

 

Figure 34- Example of an energy focused report showing monthly consumption by utility type 

4.3- DR-Advisor: A data-driven demand response recommendation system 

To take advantage of real-time pricing and demand response (DR) programs, the commercial, 
industrial and institutional C/I/I consumers must monitor electricity prices and be flexible in the ways 
they choose to use electricity. The challenge for these large consumers of electricity is to be able to 
predict their aggregate power consumption accurately and quickly in order to take suitable load 
curtailment control actions. On the surface demand response may seem simple. Reduce your power when 
asked to and for financial compensation. However, in practice, one of the biggest challenges to end user 
demand response for large scale consumers of electricity is the following: upon receiving the notification 
for a DR event, what actions must the end-user take in order to achieve an adequate and a sustained DR 
curtailment? This is a difficult question to answer for the following reasons: 
 

1. Modeling complexity and heterogeneity: Unlike the automobile or aircraft industries, each 
building is designed and used in a different way and therefore, it must be uniquely modeled. 
Learning predictive models of building dynamics using first principles based approaches (e.g. 
with EnergyPlus ) are very cost and time prohibitive and require retrofitting the building with 
several sensors. The user expertise, time, and associated sensor costs required to develop a model 
of a single building are very high. This is because usually a building modeling domain expert 
typically uses a software tool to create the geometry of a building from the building design and 
equipment layout plans, and then adds detailed information about material properties, equipment, 
and operational schedules. There is always a gap between the modeled and the real building and 
the domain expert must then manually tune the model to match the measured data from the 
building. 
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2. Limitations of rule-based DR: The building’s operating conditions, internal thermal 
disturbances and environmental conditions must all be taken into account to make appropriate DR 
control decisions, which is not possible with using rule-based and pre-determined DR strategies 
since they do not account for the state of the building but are instead based on best practices and 
rules of thumb. Rule based DR strategies have the advantage of being simple but they do not 
account for the state of the building and weather conditions during a DR event. Despite this lack 
of predictability, rule-based DR strategies account for the majority of DR approaches. The 
challenge is the increasing complexity of possible scenarios. There is a limit as to what can be 
pre-programmed and only a finite number of operations can be managed using this approach. 
There are also some operations that cannot be fully managed with a rules-based approach.  

3. Control complexity and scalability: Upon receiving a notification for a DR event, the building’s 
facilities manager must determine an appropriate DR strategy to achieve the required load 
curtailment. These control strategies can include adjusting zone temperature set-points, supply air 
temperature and chilled water temperature set-point, dimming or turning off lights, decreasing 
duct static pressure set-points and restricting the supply fan operation, etc. In a large building, it is 
difficult to assess the effect of one control action on other sub-systems and on the building’s 
overall power consumption because the building sub-systems are tightly coupled. Consider the 
case of the University of Pennsylvania’s campus, which has over a hundred different buildings 
and centralized chiller plants. In order to perform campus wide DR, the facilities manager must 
account for several hundred thousand set-points and their impact on the different buildings. 
Therefore, it is extremely difficult for a human operator to accurately gauge the building’s or a 
campus’s response.  

4. Interpretability of modeling and control: Predictive models for buildings, regardless how 
sophisticated, lose their effectiveness unless they can be interpreted by human experts and 
facilities managers in the field. For e.g. artificial neural networks (ANN) obscure the physical 
features that control them and hence, are difficult to interpret by building facilities managers. 
Therefore, the required solution must be transparent, human centric and highly interpretable. 

 

 
Figure 35- DR Advisor Overview 

The goal with data-driven demand response is to make the best of both worlds; i.e. keep the simplicity of 
rule based approaches and the predictive capability of model based strategies, but without the expense of 
first principle or grey-box model development.  

We present a method called DR-Advisor (Demand Response-Advisor), which acts as a 
recommender system for the building’s facilities manager and provides the power consumption prediction 
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and control actions for meeting the required load curtailment while maximizing the economic reward. 
Using historical meter and weather data along with set-point and schedule information, DR-Advisor 
builds a family of interpretable regression trees to learn non-parametric data-driven models for predicting 
the power consumption of the building (Figure 35). DR-Advisor can be used for real-time demand 
response baseline prediction, strategy evaluation and control synthesis, without having to learn first 
principles based models of the building. By using modified model based regression trees, we can also 
determine good demand response control policies for the duration of the DR event that achieve the 
required curtailment, without adversely affecting the system and causing any kick-backs. 
 
The following are the key features of DR-Advisor:  

1. DR Strategy Evaluation: Choose the best curtailment strategy from the available energy 
curtailment measures.  

2. DR Strategy Synthesis: provides completely new strategies in real-time that did not exist before, 
while taking into account operations and occupant comfort.  

3. Energy Analytics: Open-ended query response system for insightful analytics.  
4. No expensive audits required.  
5. Sustained load curtailment.  
6. Demand response set-point recommendations.  
7. No additional sensors required.  
8. Outperforms fixed curtailment strategies.  
9. Provides guarantees on comfort during the curtailment.  

 
DR-Advisor uses a mix of several algorithms to learn a reliable baseline prediction model. For 

each algorithm, we train the model on historical power consumption data and then validate the predictive 
capability of the model against a test data-set which the model has never seen before. In addition to 
building a single regression tree, we also learn cross-validated regression trees, boosted regression trees 
(BRT) and random forests (RF). The ensemble methods like BRT and RF help in reducing any over-
fitting over the training data. They achieve this by combining the predictions of several base estimators 
built with a given learning algorithm in order to improve generalizability and robustness over a single 
estimator. A boosted regression tree (BRT) model is an additive regression model in which individual 
terms are simple trees, fitted in a forward, stage-wise fashion.  

DR-Advisor has been tested using historical weather and power consumption data from 8 
buildings on the Penn campus (Figure 36). These buildings are a mix of scientific research labs, 
administrative buildings, office buildings with lecture halls and bio-medical research facilities. The total 
floor area of the eight buildings is over 1.2 million square feet and the size of each individual building is 
shown in Figure 37. 
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Figure 36- Buildings chosen for DR Advisor baseline prediction 

For each of the Penn buildings, multiple regression trees were trained on weather and power 
consumption data from August 2013 to December 2014. Only the weather data and proxy variables were 
used to train the models. We then used the DR-Advisor to predict the power consumption of a test period, 
which lasted for several months in 2015. The predictions are obtained for each hour, producing a baseline 
power consumption estimate. The predictions from the test-set were then compared to the actual power 
consumption of the building during the test-set period. One such comparison for the clinical reference 
building is shown in Figure 38. The following algorithms were evaluated: single regression tree, k-fold 
cross validated (CV) trees, boosted regression trees (BRT) and random forests (RF). Our chosen metric of 
prediction accuracy is the one minus the normalized root mean square error (NRMSE). NRMSE is the 
RMSE divided by the mean of the data. The accuracy of the model for all eight buildings is summarized 
in Figure 37. We notice that DR-Advisor performs quite well and the accuracy of the baseline model is 
between 92.8% to 98.9% for all the buildings. 

 

 
Figure 37- Model Validation for Penn Buildings 
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Figure 38- Model validation for Clinical Research Building 

In order to implement the DR-Advisor at Penn, we will need regular, direct export of building 
meter data in a standardized, controllable format. This will simplify analysis and reporting and leverage 
the full power and functionality of DR-Advisor. The data will be used to develop data-driven predictive 
models for buildings which form the backbone of the Demand Response and Open-Ended Energy 
Analytics Engine recommendation applications:  

 
These applications involve: 

1. Strategy Evaluation: Predictive models to evaluate pre-determined and rule-based load 
curtailment strategies. These are queries of the form: What is the expected power consumption of 

Building A (or a set of buildings) over the next time interval T; if Set-point S is changed to a value 

X? 

2. Strategy Synthesis: Providing recommendations about set-points values which takes into 
account the expected aggregate electricity load and thermal comfort inside the building. E.g. 
What should be the value of set-point S for building A (or a set of buildings) over the time interval 

T? 

3. Open-Ended Energy Analytics Engine: Building a data-driven query-response system (with 
both graphic and voice user interface) which can answer open-ended questions about:  

a. Data discovery and exploration: What is happening? 
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b. Reporting and analysis: Why did it happen? 

c. Predictive analytics and modeling: What could happen? 

d. Decision management and recommendations: What action should be taken? 

e. The following are some more examples of the kind of queries supported by the energy-

analytics system: 

i.  What is the leading cause of peak power consumption of the building compared 

to the baseline? 

ii. Are there any anomalous building electricity consumption patters? 

iii. Which buildings on campus consistently consume the most power? 

iv. At what time is the peak expected to occur for Building A? 

 
If possible, the following data would be useful to enhance the capabilities of the DR-Advisor: 
 

1. Historical time-stamped logs of Energy meter and SCADA/BMS data across different building 
types. Preferable in a common data format such as .dat, .txt or .csv.  

2. Live (read-only) SCADA feed (initially from one building) to map to a sandbox simulated 
building, to test out controls (which will not be sent back to the real building). 

3. SCADA data includes but is not limited to, 
i. AHU level sensor data (and set-points):  

1. Supply and return air temperature and flow, 
2. Damper position 
3. Reference pressure, supply static pressure, return static pressure 
4. Supply and return air relative humidity 
5. Heat exchanger inlet and outlet temperature data 
6. Fan speed  
7. AHU instantaneous power (if available) 

ii. VAV data and set-points:  
1. Reference temperature 
2. Damper position 
3. Re-heat status 
4. Outlet flow and temperature 
5. Inlet flow and temperature 

iii. Zone level data and set-points: 
1. Thermostat and humidity data 
2. Light levels (if available) 
3. People counter (if available) 
4. CO2 levels  

iv. Any sub-metered power consumption data. 
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5.0- Conclusions and Future Work 

The work conducted by the Center for Environmental Building + Design this year 
represents the continuation of work that began in 2007 when the University signed the carbon 
reduction pledge with the goal of achieving carbon neutrality by 2042. Since then the CEBD has 
assisted Facilities and Real Estate Services with the analysis of the carbon produced by the 
University. As more than 80% of UPenn’s emissions arise from energy used in facilities on 
campus, over the years these studies have increasingly focused on the energy used in buildings 
as the sector with the greatest potential for emissions reductions. 

While initial efforts to understand how the buildings on campus were using energy by 
necessity relied heavily on building energy simulations and low-order models of building 
behavior it was clear that it was necessary to collect energy consumption information from 
individual buildings directly using electric, steam, and chilled water meters capable of taking 
frequent and regular readings. A program of meter installation and data collection began with 
the bulk of the individual building energy meters coming online in FY 2015. However, simply 
collecting the data is insufficient for several reasons.  

Firstly, the data collected by the individual energy meters tends to be slightly messy. In 
FY15 as they were first brought online, many of the meters experienced a variety of issues 
involving calibration, reading incorrect units, or simply failing to collect sufficient data point due 
to connection failures or periods where they were disconnected for maintenance. As a result, 
while more meter data was available than even before, much of the efforts for the year were 
devoted to cleaning the data to remove outliers, identify the good data, and to develop a 
methodology for the interpolation of missing or removed data points in ordert o present a clearer 
picture of the actual energy consumption for each building over the course of the year.  

While those steps were necessary to understand how much energy each building uses, 
this information is of limited use. While it identifies the largest consumers, it says little about the 
actual performance of these buildings based on their size, the type of building, the activities that 
occur within, or how external variables such as weather may affect performance. The second 
half of the work is to understand why the buildings are behaving as they do and if this pattern of 
behavior suggests a problem or potential for improvements. To accomplish this, a number of 
quantitative analyses can be used to compare the performance of a building against its own 
historical patterns of consumption or to establish a benchmark of performance based on the 
normalized energy consumption of peer facilities. 

While some of this year’s work improves the collection and cleaning of the meter, the 
bulk of the research conducted was focused developing the metrics, reports, and visualizations 
which transform the meter data into useful information which will help owners and operators of 
facilities to more effectively manage the building and plan for future energy reductions. This 
work can be divided into two categories: 1) developing new metrics / visualizations for energy 
data and 2) the collection of those metrics and visualizations into reports tailored for specific 
audiences and purposes. The ultimate goal of this work would be to integrate all of the metrics 
and visualizations into a reporting platform that would give individuals access to the information 
about the buildings they are interested in in the most useful form possible to assist them in 
decision making regarding facilities management.  
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The collection and cleaning of the meter data is a necessary step for all future analyses. 
Obtaining the data in FY15 was difficult, so for FY16 a procedure was developed that allows for 
the monthly transfer of the meter data in a standardized format. This removes the extraction 
issue and allows the data to be transferred electronically. After the data was collected, new 
parameters were used to identify outliers and missing data.  

Regression analysis against weather and calendar based variables allowed for the 
interpolation of the missing and removed data points in order to present a complete picture of 
how energy was used in that building during the year. This methodology continues to be refined 
and this year the possibility of utilizing wireless data activity within each building as a proxy for 
building occupancy was explored and the feasibility of this methodology was established by 
confirming that the necessary data exists and can be collected. Early analysis of the potential 
for this data as a proxy for occupancy and it’s capability to improve the ability to interpolate and 
predict electrical usage within a building seems impressive. 

The second significant task accomplished in FY16 was the transfer away from 
spreadsheets as the primary aggregator of energy information for the generation of reports and 
comparative analysis of building energy consumption to a true database. The database offers 
several clear technological advantages for the handling of the meter information. One major 
limitation of spreadsheets is their inability to handle the large number of individual data points 
collected by the energy meters, which required the meter data to be separately aggregated into 
daily or monthly consumption before it could be used to generate reports.    

The database structure, however, is capable of handling millions of individual records, 
which allows for the direct import of the meter data after cleaning and interpolation. Not only 
does this greatly reduce the time required and risk of errors being introduced via transcription 
errors, it also allows this finer grained detail to be used in generated reports. This opens the 
possibility for examinations of smaller increments of time such as daily, monthly, or quarterly 
which could be tailored to answer a much wider array of energy based questions. In addition to 
handling a larger quantity of data points, the database can also serve as an aggregator of 
multiple types of information including pictures, charts, construction information, and building 
history. While Excel primarily serves as a vehicle for quantitative analysis, the database can 
aggregate qualitative data as well, giving increased context and understanding to existing 
numerical analyses.  

A final advantage of the database over spreadsheet is the ability to host it on the UPenn 
network or over the internet. Coupled with the ability to create password protected user 
accounts this will allow unprecedented access to the energy information generated by this work 
and eventually may allow users to access real-time energy analysis for the buildings they 
occupy or operate. This will allow the database to serve as the ultimate aggregator of building 
information, serving as both the receptacle for the data as well as the portal for its interpretation 
and distribution.  
  



University of Pennsylvania Main Campus: Building Energy Reporting and Performance Analysis 

November 4, 2016  43 

5.1- Proposed Future Work 

 There are several promising avenues for future research that would enhance the utility of 
the data gathered by the energy meters and aid in the decision making process regarding the 
management of facilities on the UPenn campus. These can be broadly divided into four 
categories: 1) further development of the database and its reporting capabilities, 2) the 
development of new and useful metrics which could provide unique and useful insights into the 
performance of individual buildings on campus, 3) development of graphic visualizations to 
make the data accessible to different users, such as DSim, 4) development of real-time tools, 
such as DR-Advisor, using data collected by the SCADA system.  
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Table of Annual Energy Consumption by Building 

 

ID Building Name FY15 Total FY16 CHW FY16 Elec FY16 Stm FY16 Total Target FY16 / sqft Target/sqft

5 Anatomy Chemistry Building 13,907,886 1,705,480 1,725,188 5,620,107 9,050,774 30,901,097 70.6 241.2

10 Annenberg Center 13,463,510 2,241,045 4,155,397 8,951,209 15,347,651 8,383,040 143.2 78.2

15 Annenberg School 8,867,202 1,172,963 3,275,410 2,750,507 7,198,880 4,397,154 82.0 50.1

22 Biomedical Research Building 2 230,011,138 27,329,366 81,393,643 128,493,935 237,216,945 101,516,834 577.4 247.1

25 Fisher-Bennett Hall 11,777,458 2,068,569 3,724,309 8,161,054 13,953,932 3,716,669 188.1 50.1

27 Biomedical Research Building 1 104,579,393 10,813,671 40,094,856 48,563,683 99,472,211 53,073,887 463.1 247.1

30 Blockley Hall 21,201,627 1,131,411 8,069,795 10,966,056 20,167,262 22,132,585 116.7 128.1

45 APPC 6,899,530 555,966 5,886,378 4,475,335 10,917,679 2,505,848 218.3 50.1

50 Caster Building 6,180,881 106,227 870,912 977,139 1,234,266 39.7 50.1

55 Kelly Writers House 158,135 10,296 182,363 192,659 323,140 34.5 57.9

60 Chemistry Laboratories: Cret 686,579 1,152,172 1,838,751 5,269,902 86.2 247.1

65 Chemistry Laboratories: 1973 42,158,299 3,959,191 19,896,565 16,885,974 40,741,730 37,503,585 268.4 247.1

70 Chemistry Laboratories: 1958 7,481,181 1,746,394 1,254,318 9,423,079 12,423,791 10,206,462 293.6 241.2

75 The ARCH 2,665,150 672,450 1,632,866 1,141,373 3,446,689 1,668,852 119.6 57.9

80 Class of 1920 Commons 14,060,466 909,184 5,963,096 4,428,214 11,300,494 6,996,171 237.4 147.0

85 Class of 1923 Ice Rink 4,861,485 5,034,098 5,034,098 4,517,324 69.9 62.7

90 Class of 1925 House 6,291,177 312 803,531 5,050,199 5,854,042 1,153,674 143.6 28.3

92 Clinical Research Building 84,595,523 4,271,047 27,723,553 50,829,800 82,824,400 58,260,844 406.3 285.8

95 College Hall 9,446,618 1,933,089 3,604,141 4,211,833 9,749,063 5,493,263 102.8 57.9

100 Colonial Penn Center 237 237 57.9

103 Cyclotron 4,885,605 2,092,367 2,606,317 100,133 4,798,818 1,040,428 590.8 128.1

110 Dietrich Graduate Library 22,650,059 2,302,985 0 12,556,876 14,859,862 9,527,361 83.3 53.4

115 DuBois College House 3,690,978 1,283,164 5,797,883 7,081,048 2,587,158 77.5 28.3

130 Graduate School of Education 18,234,050 779,143 3,098,195 2,708,295 6,585,633 2,323,054 142.0 50.1

135 English House 10,120,753 2,637,938 8,428,474 11,066,411 1,905,156 164.4 28.3

140 Evans Building 22,020,430 3,037,850 7,813,903 15,823,155 26,674,909 5,506,461 223.3 46.1

145 Fox-Fels Halls 1,847,982 93,362 2,531,837 601,393 3,226,593 1,377,566 135.6 57.9

155 Franklin Building 32,397,987 3,381,547 13,758,974 17,113,514 34,254,035 5,813,565 341.2 57.9

160 Franklin Building Annex 5,510,375 756 3,405,497 1,391,457 4,797,710 2,237,279 124.2 57.9

165 Weiss Pavilion 3,040,457 699,763 9,660,922 2,278,978 12,639,664 2,069,100 383.0 62.7

170 Fisher Fine Arts Library 3,764,996 910,478 2,358,048 3,763,103 7,031,629 3,516,123 106.8 53.4

173 Schattner Center 19,043,443 2,976,945 5,828,184 9,565,402 18,370,531 3,290,480 257.4 46.1

176 Pottruck Health and Fitness 18,210,155 1,400,748 0 13,645,339 15,046,087 10,023,347 94.1 62.7

180 Goddard Laboratories 9,883,443 1,096,898 2,441,853 4,379,499 7,918,250 6,478,936 180.0 147.3

185 Grad Rsch Wing Moore School 2,209,662 6,769,497 8,979,160 5,344,166 212.7 126.6

190 Sansom Place West 13,358,628 1,371,927 3,757,454 10,742,649 15,872,031 6,604,536 68.0 28.3

205 Harnwell College House 14,709,178 702,843 5,732 7,931,147 8,639,723 8,720,419 28.0 28.3

210 Harrison College House 14,882,759 2,066,142 155,604,214 9,672,341 167,342,696 8,739,213 541.9 28.3

215 Hayden Hall 7,401,097 3,190,583 2,047,335 2,671,171 7,909,089 3,146,865 145.5 57.9

220 Rodin College House 19,236,426 1,508,825 8,065,461 17,807,873 27,382,159 8,721,435 88.9 28.3

225 Hill College House 19,120,192 4,598,573 11,013,685 15,612,258 5,323,005 83.0 28.3

227 Vagelos Laboratories 53,679,179 6,777,560 17,639,285 24,635,152 49,051,998 29,625,356 473.2 285.8

230 McNeil CEAS 549,209 549,209 738,572 43.1 57.9

235 Hollenback Center 11,405,520 308 2,801,380 2,801,688 3,730,725 47.1 62.7

241 Carolyn Lynch Laboratories 47,144,634 6,031,196 0 28,779,043 34,810,238 30,537,367 274.9 241.2

245 Houston Hall 16,819,862 2,529,297 10,130,846 9,299,479 21,959,621 12,603,880 256.1 147.0

246 Singh Center for Nanotechnology 29,698,435 1,437,332 12,047,371 10,158,879 23,643,582 10,082,317 300.4 128.1

250 Hutchinson Gymnasium 21,108,499 1,485,419 4,185,314 16,899,193 22,569,926 6,768,214 209.1 62.7

253 Institute of Contemporary Art 3,435,506 981,912 1,104,521 2,036,379 4,122,812 772,505 151.0 28.3

255 Irvine Auditorium 11,219,940 1,657,540 0 6,571,804 8,229,344 5,494,122 117.1 78.2

260 Johnson Pavilion 51,291,908 8,530,370 26,937,781 38,737,611 74,205,762 23,806,080 459.1 147.3

265 Lerner Center 2,121,218 311,672 643,482 1,244,851 2,200,005 1,482,609 74.3 50.1

270 King's Court 5,010,022 912,105 2,172,554 3,084,659 1,815,898 48.1 28.3

280 LRSM 23,990,855 3,743,113 6,981,400 17,039,889 27,764,402 11,907,151 298.7 128.1

284 Lauder-Fischer Hall 3,798,671 375,288 1,421,353 845,310 2,641,951 1,223,762 108.2 50.1

285 Gittis Hall 3,127,552 488,826 4,140,400 4,629,225 1,680,003 138.0 50.1

286 Tanenbaum Hall 17,645,165 1,683,690 9,829,349 2,326,680 13,839,720 5,983,043 123.5 53.4

288 Golkin Hall 17,050,545 355,063 15,645,380 16,000,444 2,050,092 391.0 50.1

290 Leidy Laboratories of Biology 7,873,616 1,290,074 4,641,562 2,420,724 8,352,359 9,771,587 125.9 147.3

293 Levine Hall 13,148,935 1,673,902 3,344,679 9,891,477 14,910,057 4,709,400 158.6 50.1

295 Levy Center for Oral Health 26,158,773 9,244,933 7,924,549 13,871,863 31,041,344 4,357,234 328.4 46.1

300 Hecht Tennis Center 2,502,719 3,455,291 3,455,291 3,655,849 59.3 62.7

305 Silverman Hall 9,885,733 1,081,518 3,947,160 5,028,678 5,111,352 49.3 50.1

310 Claudia Cohen Hall 8,349,624 1,459,753 2,608,276 4,299,600 8,367,629 4,677,440 103.6 57.9

320 Mayer Residence Hall 4,947,873 158,053 1,257,212 902,286 2,317,551 2,038,991 32.2 28.3

325 McNeil Building 19,093,217 1,433,307 7,009,108 7,699,354 16,141,769 6,031,237 134.1 50.1

330 Stemmler Hall 98,018,843 13,066,690 24,218,996 63,159,777 100,445,463 60,540,814 400.2 241.2

335 John Morgan Building 31,723,489 6,000,591 5,236,106 8,734,140 19,970,836 31,096,141 94.6 147.3

340 Meyerson Hall 19,102,820 1,276,017 4,002,951 2,118,476 7,397,444 4,706,995 78.7 50.1
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345 Moore School Building 8,004,779 1,530,664 3,478,760 2,572,837 7,582,261 6,287,019 152.7 126.6

350 Morgan Building 5,030,248 73,110 484,552 1,088,467 1,646,129 1,120,474 85.1 57.9

380 Sansom Place East 23,675,282 7,404,882 6,583,489 19,920,700 33,909,071 7,904,560 121.4 28.3

385 Claire M. Fagin Hall 28,821,958 2,759,087 8,128,769 8,658,880 19,546,736 8,296,560 118.0 50.1

390 3537 Locust Walk 0 87,705 87,705 325,572 15.6 57.9

405 Civic House 148,435 159,908 159,908 358,980 25.8 57.9

410 3905 Spruce Street 250,002 274,220 274,220 787,440 20.2 57.9

412 Parking Garage, 32nd & Walnut 552,509 552,509 0 4.0

415 Jaffe History of Art Building 1,598,991 115,175 137,729 481,353 734,257 755,715 56.3 57.9

420 3808-3810 Walnut Street 493,274 493,274 880,370 32.4 57.9

450 Palestra 20,876,169 5,032 2,700,882 2,705,914 5,822,449 29.1 62.7

456 Skirkanich Hall 14,049,916 1,957,925 6,241,971 6,269,324 14,469,219 7,342,800 249.5 126.6

460 Carriage House 2,667,699 8,991 512,656 1,092,547 1,614,194 446,814 209.2 57.9

470 Presidents House 134 1,747,485 1,747,618 807,300 125.3 57.9

475 Solomon Laboratories 8,647,540 2,849,353 3,194,862 5,053,134 11,097,350 8,515,413 192.0 147.3

490 Quadrangle 17,913,816 2,187,108 11,136,212 25,696,589 39,019,909 14,619,238 75.5 28.3

500 Richards Medical Research Lab 27,367,954 1,121,761 5,718,941 6,846,488 13,687,190 4,937,483 127.8 46.1

510 David Rittenhouse Laboratory 27,419,425 2,544,065 17,588,588 30,413,416 50,546,069 30,821,403 207.6 126.6

515 Hillel at Steinhardt Hall 283,824 1,725,207 774,270 2,783,301 5,218,500 78.4 147.0

525 Charles Addams Fine Arts Hall 14,131,157 2,208,224 3,319,946 7,939,421 13,467,590 2,217,094 304.3 50.1

532 Bookstore 7,468,909 0 21,928,064 29,396,973 #DIV/0! #DIV/0! 57.9

535 Steinberg Hall - Dietrich Hall 16,840,171 2,331,478 7,790,159 8,386,152 18,507,789 9,005,275 103.0 50.1

550 Stiteler Hall 13,171,826 781,852 6,020,293 4,297,119 11,099,264 1,983,960 280.3 50.1

555 Stouffer College House 15,517,831 1,934,046 6,250,995 6,766,954 14,951,995 3,749,390 112.9 28.3

560 Sweeten Alumni House 763,761 15 56,593 56,609 723,750 4.5 57.9

565 3216 Chancellor Street 7,101,366 2,230,390 4,563,962 6,794,351 2,057,245 423.1 128.1

570 Towne Building 54,765,165 4,297,885 8,472,842 44,327,023 57,097,750 9,886,715 334.4 57.9

575 University Museum 15,718,925 3,870,914 13,184,285 16,634,547 33,689,745 5,083,274 187.6 28.3

577 Penn Museum Parking Garage 1,556,274 1,556,274 0 7.0

580 Van Pelt - Dietrich Library Center 38,370,012 5,163,457 15,956,926 21,120,383 10,744,881 105.0 53.4

585 Van Pelt Manor 4,854,715 624 2,289,079 3,134,890 5,424,594 2,159,290 71.1 28.3

590 Vance Hall 22,626,474 1,845,745 9,687,727 14,842,408 26,375,880 5,335,951 247.6 50.1

595 Ryan Veterinary Hospital 59,363,903 0 18,144,545 37,234,554 55,379,100 25,719,330 370.4 172.0

600 Veterinary Medicine Old Quad 49,829,992 15,981,666 8,346,420 33,854,351 58,182,437 15,428,400 648.6 172.0

605 Weightman Hall 9,287,802 0 6,512,966 0 6,512,966 4,094,310 99.7 62.7

610 Steinberg Conference Center 23,304,793 3,083,828 9,606,871 8,050,106 20,740,804 7,576,300 130.9 47.8

615 Dunning Coaches' Center 4,437,190 440,652 0 3,465,106 3,905,758 943,770 239.6 57.9

617 Huntsman Hall 78,141,176 7,971,094 24,313,889 45,607,495 77,892,478 16,032,014 243.4 50.1

620 Williams Hall 12,664,815 1,468,401 4,319,278 5,731,185 11,518,865 6,379,083 90.5 50.1

630 Hill Pavilion 52,706,020 4,959,516 21,513,438 29,299,861 55,772,816 31,330,358 439.9 247.1

9855 Locust Walk, 3615 26,332 404,784 431,116 780,955 32.0 57.9

9883 Locust House 19,803 19,803 520,058 2.2 57.9

9999 Module 6 Parking Garage 4,386,237 4,386,237 0 14.9


