Building a
Residential Real
Estate Market Study
App for iI0OS

Peter Herman
CPLN 680
May 2016

Get Started >

Abstract

Several i0S apps exist which use U.S. Census American Community Survey
housing data, but none are geared towards housing development. The beginning
of this paper justifies the creation of one such an app, named MarketStudy. The
bulk of this paper is dedicated to explaining how MarketStudy was created, and
detailing its functionality using examples of Swift code. Finally, major design
choices and causes of common error are explained. This paper concludes
suggestions for further directions MarketStudy could be taken in.

Introduction

The number one mistake amateur real estate developers make is paying too much for land. As
with many economic inefficiencies, overpaying for land stems from the purchaser’s lack of perfect
information. In other words, the more the buyer in areal estate transaction can know about the market
surrounding a parcel, the better deal he or she is likely to receive. This effect is not limited to real estate
developers. A prospective renter touring several apartments is better off knowing the median rent of
the area in which they are leasing. A small businessman looking to open up a storefront in a
neighborhood would be well aided by knowing its average income. Most real estate transactions occur
without the ability of a purchaser to conduct an extensive market study. Whether they know it or not,
most buyers of real estate are looking to see if their prospective property follows Waldo Tobler’s First
Law of Geography. The First Law of Geography states that “everythingis related to everything else, but
near things are more related than distant things.” Real estate pricing follows this law, as the hackneyed
adage goes “location, location, location.”

An app that could pull up American Community Survey (ACS) information surrounding a
location would bring Tobler’s Law right into the pocket of the purchaser. This dataset contains
everything from what percentage of their income the average resident of a census block spends on rent,
to the most common form of transportation they take to work. This is not to imply, however, that the
ACS is the only useful dataset out there for real estate buyers. Say, for example, a prospective
homebuyer is conscious of how close to ahome is to local elementary schools, this data is unavailable to
the census. That being said, Revenue from a property is derived from rents and vacancy, and the best
indication of how much revenue a developer can expect to make from a project are the rents and
vacancy of the surrounding area. By having the materials make a revenue projection on at their
fingertips, hopefully the app will aid in land price negotiation for both sides. As the negotiated land
price rises or falls, the developers could dynamically see how land price affects their projected revenue,
and both sides could more easily to a mutually profitable agreement.

Objective

Produce an iOS application for use on the iPhone that gives users information about the housing and
demographic characteristics of the area around a given address using data from the U.S. Census, and the
ability to use this data to calculate land value.

Rationale

As was touched upon in the introduction, MarketStudy does not undertake any analysis aside
from computing land value based on user inputs. The app only exists for convenience. Two scenarios for
its use come to mind: if a developer is in the field and wants to do pencil out projections of whether or
not a project will be profitable, and in a land purchase negotiation where a developer quickly needs to
adjust their pencil out model to accommodate for fluctuating land price offers.While those may be
limited use cases, the app fills a unique niche on i0S. The major differences between MarketStudy and
other major apps which pull from the Census API are as follows:

First, the Census Bureau’s own demographics app, Dwellr. Dwellr only offers information on
the state, county, and municipal levels. MarketStudy, on the other hand, delivers information on the
smallest available level, the census tract. The census tract is the superior geographical unit for an app
built for comparing neighborhoods for two reasons. First, it controls for population. Every census tract
contains an estimated 4,000 people. This allows for comparisons across different markets in a way that
municipal level data does not. Comparing the rental apartment market of Philadelphia and
Wilkes-Barre is almost meaningless due to the population discrepancy. Second, residential real estate
is hyper-local. The vacancy rate for residential buildings across Philadelphia is 7.14%, but in Center
City, it is 1.3%. The point is, municipal level data just doesn’t cut it when it comes to making real estate
decisions. Some third party apps like Pocket Census have the same issue.

Zillow and Trulia offer very localized real estate data, but do not offer information about how
this data has changed over time. This is because those apps and MarketStudy are appealing to two
different audiences. Apartment seekers are concerned with the variety of different rents in an area,
while apartment developers are more concerned with the average rent of an area and if its increasing or
decreasing over time. Moreover, the American Community Survey offers more indepth rent
information: it draws from currently occupied apartments rather than ones for sale.

Sitewise, Census+, and Your Census Info are all amature which all share similar problems.
None of them display income data, their user interfaces do not reflect thoughtful design, and like Zillow,
they do not display demographic change over time.

Methodology
Development

Swift was an entirely new language to me before started this semester. Not only was itanew
language, it was a new type of language. The rules of the scripting languages I had learned no longer
applied in the object oriented world. The major difference between the two is that Swift, being an object
oriented programming language, contains all of its functionality within classes. Classes are models of
the real, tactile elements of the project. Each page of the app has a class. Alanguage like Javascript, on
the other hand, operates with universal functions. Universal functions can be used to solve a problem in
any part of the project. It is possible to do object oriented programming in Javascript of course, but it is
mandatory to do it in Swift.

Switching to an object oriented language entailed looking at problems in an entirely new way.
As mentioned above, classes correspond to real elements of the project. There was a class for the
mapping page, a class for all of the graph pages, etc. Building the app, I proceeded page by page, or class
by class, adding all the functionality | wanted on each one before moving on to the next. If I ran into any
errors, they were contained on one page of my app. Interactivity between classes was confined to a
single global variable. This is directly different from how one approaches problems in a procedural, or
scripting, environment. In a scripting environment, one looks at the larger goal, and breaks it into
smaller and smaller sub-goals, that eventually into such small components that they can be
accomplished using the methods inherent to the language one is using. Changes to one of the small
components of a procedurally written script changes everything , as everything interacts with
everything else. Coding in a scripting environment forces one to look at their problem as a set of actions,
in contrast, Swift forced me to break down my project based on its visual components,
compartmentalizing my work for each page of the app.

[first began to learn Swift with the Stanford Introduction to Swift lectures on iTunes U, but
quickly found I learned faster by getting my hands dirty. That is, by actually building the app, and
solving the many errors inherent in amateaur coding. This method involved doing a tutorial for every
piece of functionality I wanted to add to the app: geocoding, API Calls, fading elements in and out, etc.
MarketStudy is thus a Frankenstein’s monster of pieces of code from different tutorials that have been
altered to fit my specific purposes. An outline of the workflow of my app is shown below:

User Entered

Address

Address
[String)

Geolocator

MapKit

Long/Lat
[Structure)

FCC API
{Asynchronous)

Census APl
[Asynchronous)
FIPS Code Demographics
(5tring) {Double)

Graphics in User Interface

Each of the methods in the graphic above does not correspond to a page in the MarketStudy app.
Rather, all of the methods take place in the Map Places Scene. To avoid any confusion, take alook at the

graphic below. The user proceeds sequentially through each of these scenes, from left to right. Larger
photos can be seen in the gallery section:

Welcome to MarketStudy.
Search your address on the next page,
then press the action button to look at

demographics.

Get Started >

Intro Scene

1:32PM -
Map Places Q
Bala Cym .
®

b1
4400 spruce street philadelphia pa

o & uuppmmm”

e ‘PHILADELPHIA. ¢

Map Places Scene

Carrier & 1:33PM -

& MapPlaces Land Value Calculator

Vacant vs Occupied

Renters vs Owners

Population

Median Income

Vacancy

Graph Picker
Scene

Carrier & 355 PM -

< 4400 spruce street phil... Save

Median Rent (dollars)

Graph Scenes

Carrier & 4:00PM -

< Back Land Value Calculator

Average Rent per Unit 889
The average rent is: $889.00...
Number of Units 40

Expected Vacancy Rate 004482
The vacancy rate is: 0.04482...
Expected Yearly Expenses 500
Expected Cap Rate 0058
Construction Cost 10000

Parcel Size 100000

Calculate $70.088691.1

Land Value
Scene

The following section proceeds sequentially through the classes which control each of these scenes. The
Swift code will be shown on the left, and points of interest will be explained on to the right and below.
Only one example of the six graph scenes will be shown, as the code between them contains major

overlap.

Intro Scene [j UIKit is the main library (or framework, as Swift calls it) for iOS apps, it
will be called in every scene. It handles all interactions with the elements

_ : seen on the phone: buttons, text, etc.
C]lr"purt UIKit
C]-:T.ass introScene: UIViewController { [jCIasses are what Swift calls objects, there is one for every scene. The
name of this class is introScene and it is of type UlViewController, which

C] override func viewDidLoad() { . ey
super.viewDidLoad() means it corresponds to one of the pages on the app. Swift is a very type

specific language, so every definition includes a colon, then the type of

print(“start") what is being defined.

C] let background = CAGradientLayer({).turgquoiseColor() [j
ORI, TEamE = BELLS D It Anything that happens within the viewDidLoad function occurs when the
self.view.layer.insertSublayer{background, atIndex: @) . L. .
scene loads. The override characteristic is attached to the function
b definition because viewDidLoad is defined in every scene, and Swift is
D:.'?Iam,tl:-: il N iR S EartedBittons . UTSiton very sensitive about instances with the same name.
RUREEinS Wame vinan hisppenr (soimmied; Bond) These three lines call the background setting function, set up in another

super.viewDidAppearianimated) . .
Swift document. The self.view.bounds call refers to the area of

introScene that falls within the iPhone view. The background is set to

D UIView.animateWithDuration{4, animations: {
s6L¥; oetitartadbitton. SLhe = index 0, meaning behind everything else.

self.getStartedButton.alpha B.825

et gutstartsclicbinnun ipes . .00 [j This is the call of the button which leads the user to the next scene.

self.getStartedButton.alpha = @.875 . . . I .

self.getStartedButton.alpha = 1.0 There is no piece of code which corresponds to that! All one has to do is
H call the button (as a UlButton Object), and choose a setting in the Swift

user interface, XCode.

This last function operates within getStartedButton, and fades it in. Every
4 sections, the getStartedButton’s opacity, described as its alpha
method, gets closer to 1, fully opaque.

Gradient Extension
import UIKit

[:j extension CAGradienmtLayer {
func turquoiseColor{) —= CAGradientLayer{

[:]Let topColor = UIColor(red: (15/255.8), green:(11B/255.8), blue:{128/255.8), alpha: 1)
let bottemColor = UIColor(red:(84/255.8), green: (1B7/255.@), blue:(187/255.8), alpha: 1)

let gradientColors: [CGColor] = [topColor.CGClolor,bottomColor.CGColor]
let gradientLocations: [Float] = [@.8, 1.8]

Llet .gradientLayer;: CAGradientlLayer = CAGradientLayer()

igradientlLayer, locations = gradientlocations

@) return gradientLayer

}

C] In Swift, extensions are places to add functionality to common types outside of a normal scene. The CAGradientLayer class is found within
the UIKit library, and refers to a gradient image. In this extension, we are adding a new function for it to recognize.

The function created in this extension sets the background gradient to between blue and turquoise. Swift reads colors in RGB as well as
D hexadecimal format. Alpha refers to the opacity value.

The locations of these colors are 0.0, refering to the bottom of the screen, and 1.0 refering to the top. It's possible, but ugly, to set more than
C] two colors in a gradient, at height values between 0.0 and 1.0.

D Every function needs a return statement! Calling this function returns a CAGradientLayer, as defined in the “->” statement at the top.

Map Places Scene- Defining Variables

import UIKit

[jirp&rt MapKit

Ouar universalArray = [Double] ()
var searchText = String()

struct coors {
[j ctatic wvar lat = 8.8
static var long = @.8
1

[jstrl_ct ipBuilder {
var state = "ga"
var county = “aaa"
var tract = "@ogaea"
}

[:chaﬂs ViewController: UIViewController, UISearchBarDelegate, MEMapViewDelegate{

(]

[:j var searchController:UISearchController!
var annotation:MKAnnotation!
var localSearchRequest:MKLocalSearchReguest!
var localSearch:MKLocalSearch!
var localSearchResponse:MKLocalSearchResponse!
var error:M5Error!
var polntAnnotation:MEPointAnnotation!?
var pinAnnotationView:MKPinAnnotationView!

[

3

MapKit is the library used for Apple Maps in iOS Apps. | decided to use
Apple Maps over Google Maps, because Google Maps uses a lot more
battery power, and | thought it would be easier to use the map software
native to the iOS environment.

The universalArray is the global variable where the values from the
Census API will be stored. The graph library | used takes double values,
so | specify it will be a list of doubles. The searchtext global string will be
set to whatever the user searches, and will be used for labeling elements
in other scenes.

The Corodinatinates structure holds coordinates. It will be filled using the
MapKit Geolocator, and then its values will be passed to the FCC
Census Block Conversions API. This structure and the ipBuilder do not
necessarily have to be a global variable since they’ll be used in this

scene only, but | thought they may be useful if |

wanted to add functionality.

The ipBuilder Structure holds integer values (implicitly defined here), that
correspond to different elements of the FIPS code, outputted by the FCC

API and used in the call for the Census API.

C]The Map Places scene contains three classes that control what the user
sees (ViewControllers). The view itself, defined on every page, the
search bar, and the map.

[jl'he local variables within the classes correspond to different elements of the Scene. The searchController is the search bar, the annotation
deals with any already existent pins on the map. The localSearchRequest contains the user inputted address, the localSearch carries out
the search, and the response contains the outputted coordinates. The error term handles the error popup if a searched address isn’t found.
The pointAnnotation and pinAnnotationView reference the pin and its label, respectively.

IBAction, as opposed to IBOutlet, defines an the
function which operates upon clicking an element of
D the UlView. This function is tied to the top navigation
@IBAction func showSearchBar(sender: AnyObject) { :
searchController = UlSearchController{searchResultsController: nil) bar in the Map Pla(?es, Sc_ene, and makes the search
searchController. hidesNavigationBarDuringPresentation = false bar appear upon clicking it.

self.searchController.searchBar.delegate = self
presentViewController(searchController, animated: true, completion: nil)

Map Places Scene- The Search Bar

} C] This is the map object. It's worth noting here that
variables defined with exclamation points in Swift

EI80utlet var mapView: MKMapView! . . :
D ;i cannot be set to null. Variables defined with let

func searchBarSearchButtonClicked({searchBar: UISearchBar){ instead of var are immutable.
searchBar.resignFirstRespander() o]
dismissViewControllerAnimated(true, completion: nil) D This is the first of many blocks of code executed when
if self.mapView.annotations.count != B{ the search bar’s search button is clicked. It deals with
annotation = self.mapView.annotations [@] h f . h Fi .
celf.mapView. removefAnnotation{annotation) the consequences of previous searc _eS' irst it
} removes the reference to them, then it makes the
C]llccalE.earn:Iﬁecweﬂ = MKLocalSearchRequestl() search b_ar dlsgppear. Finally, if there are pins
localSearchRequest.naturallanguageQuery = searchBar.text (annotations), it removes them.
searchText = searchBar.text!
localSearch = MKLocalSearch(request: Lc;a'-_.Searn:l‘.ﬁ.quest]

D The search bar text is turned into a natural language query. This means the MapKit search will not expect it to be a perfectly written
address, but rather one that is incomplete. This also means that if the user types in a point of interest search, the map will be able to
Geolocate that as well. When most users see a map in an application, they do not expect it to filter information for them. So on
MarketStudy too, the user can enter “coffeeshop” and find the nearest coffeeshop. Without this functionality, users might think that the
map is not working.

Map Places Scene- Error Handling and Drop Pin] The start with completion handler fine
calls the geolocation.

N localSearch.startWithCompletionHandler localSearchResponse, error) —= Voild in . . .
. 5 ol P 4) .The error function first checks if the

completion handler for the
let alertController = UIAlertController{title: nil, message: "Place Mot Found"”, ; ; ; s
preferredstyle: UIAlertControllerStyle.Alert) geolocation funCtl(_)n 1S emp.ty' Ifitis,
alertController.addAction(UIAlertAction{title: "Dismiss", style: UIAlertActionStyle. an alertController instance is created,

if localSearchResponse == nil{

“Defaultgwhangh&z: 2111]?: RS w— - " and an animated popup is created
self.presentViewController{alertController, animated: true, completion: ni .
sl ' pic telling the user the place was not

} found. An example of this can be

self.pointAnnotation = MKPointAnnotation() seen in the ga"ery at the end of the
self.pointAnnotation.title = searchBar.text

self.pointAnnotation. coordinate = ClLLocationCoordinate2D({latitude: localSearchResponse!. paper.

boundingRegion.center. latitude, longitude: localSearchResponse ! . boundingRegion.

center. longitude)

If the geolocation has been
| performed successfully, and the
n coors.lat = sel_f. po ir.'.'tﬁ.r.nn'tat iqn. Coo rdir.'.ate. lat ityde coordinates have been passed from
coors.long = self.pointAnnotation.coordinate. longitude . .
the address search to the pin variable

] 12t reID = "pin" via the The localSearchResponse
self.pinAnnotationView = MKPinAnnotationView(annotation: self.pointAnnotation, class. The pin’s label is set to the text
reuseldentifier: relD)
self.mapView.centerCoordinate = self.pointAnnotation.ceoordinate of the address.

self.mapView.addAnnotation(self.pinAnnotationView.annotation!)
nThe coordinates are set to the attributes of the coors struct, so they can be used outside of the
self.updateIPFCC("2014") searchbar function. The coors struct will be used later in building the call for the FCC Census Block
B self.updateIPFCC("2013")

self.updateIPFCC("2812") Conversion API.

self.updateIPFCC("2011")
self.updatelPFCC(2010") () The pin is actually dropped using the addAnnotation function from MapKit, and the map is centered

} on that pin.

aThe updatelPFCC function preforms our API Calls, one for every year of the census we call

Map Places Scene- FCC API Call The global structure ipBuilder is
initiated, and the longitude and

func updateIPFCC{year: String) { latitude doubles from the coors

. var ipB = ipBuilder()

let lmgString:String = String({format:"%f", coors.long) structure are converted into Strings in
let lat5String:5tring = String{format:"%f", coors.lat) order to build the API Call.
let firstEnd: 5tring = "https://data.fcc.gov/apisblocks/Tind?format=jsonp&latitude=" The API Call is built.
Llet secondEnd: String = "&Elongitude="
Let thirdEnd: 5tring = "“&showall=Talse" . T
let postEndpoint = firstEnd + latString + secondEnd + lngString + thirdEnd The NSURLse_SS|On clasg is initiated,
. called. By putting a question mark
%M let session = NSURLSession.sharedSession() T
let url = MSURL{string: postEndpoint)! after NSData, Swift is prepared to

session.dataTaskWithURL(url, completionHandler: { (data: NSData?, response: NSURLResponse?, errorf€Ceive a null value.
WSError?) —= Void in

guard let realResponse = response as? NSHTTPURLResponse where .
realResponse.statusCode == 280 else { nThe guard Stat_ement checks if the
print("“Not a 208 response") HTTP request is successful, we get a
1 FERrn 200 response. If not, we print the
a1 error statement in the console.

if let ipString = WSString(data:data!, encoding: NSUTF85tringEncoding) {
// Print what we got from the call

let stateString = ipString.substringWithRange{MNSRange({location: 27, length: 2}) The code capture.s th_e data from the
ipB.state = stateString FCC API as a String if the call was
let countyString = ipString.substringWithRange(MSRange(location: 29, length: 3)) made successfully. FinaIIy, the
ipB.county = countyString . .

let tractString = ipString.substringwWithRange{MSRange(location: 32, length: 6)) response FIPS code string is parsed
ipB.tract = tract5tring so that the correct components of the

1 ipBuilder are put in the right place.

1

f/Mow call the Census American Community Survey Api Using the FIPS Code

Map Places Scene- Census API Call Ve are still operating in the
updatelPFCC function, so the year

let httpCensus = "http://api.census.gov/data/" variable is available. Every time we
let censusYear = year + "/acs5” j run the function, we call a different
Llet censusKey = "&key=ccdaSbal3@0ddal23edcba2ala®e?ciOb2768b46"
let startParams = " ?get:" yeal’ Of the CenSUS API
let medianAge = "B@1882_a@1E"
let medIncome = " ,B@6811 8alE™ . : : :
let medRent = ",B25858 BB1E" Thelgeo'graphy attribute is built using
let totalPop = ",B@1883_@@1E" the ipBuilder global structure.
Let vacantUnits = " ,B258082_a&3E"
Let occupledUnits = ", B25882_aB2E" . . .
Yok ounardceunied o0 iSaal SRIE" (£]) Just like the FCC API Call, if there is
let renterOccupied = ",B25003_@83E" no 200 HTTP response, an error is
Let geography = "&for=tract:" + ipB.tract + "&in=state:™ + ipB.state + “+county:" + ipB.county prmted

2 Let tractCall = httplensus + censusYear + startParams + medianAge + medIncome + medRent + totalPop + wvacantUnits +

let

occupiedlUnits + ownerOccupied + renterOccupied + geocgraphy + censuskKey
sessionN = NSURLSession.sharedSession()

print{tractCall)

lLet

urlM = NSURL{string: tractCall}!
e sessionN. dataTaskWithURL{urlN, completionHandler: { (data: NSData?, response: MSURLResponse?, error: NSError?) —=
Void in
// Make sure we get an OK response The Census API returns a string that

guard let realResponseMN = response as? NSHTTPURLResponse where

realResponseN.statusCode == 280 else { contains two arrays seperated by a

print{”Not a 200 response”) line break. The first array is useless,
; return so the code splits the call back string
by a line break, then grabs the
second element. Next, the code
do {
if let ipStringMW = WSString(data:data!, encoding: NSUTFBStringEncoding) t.ransfo.rms Fhe second of the array
4 S/ Print what we got from the call I|ke-str|ngs into a real array by
let fullCallBackArray = ipStringN.componentsSeparatedByString(™\wn") splitting it every time a comma is

let callBackArray = fullCallBackArray[1].componentsSeparatedByString(",") used.

print{callBackArray)

let
let
let
Let
let
let
Let
Let

Map Places Scene- Building the Global Array g An example of an output from the last

ageString = callBackArray[@] ; .
incomeString = callBackArray[1] block of code is as follows:

medRentString = callBackArray[2] ["[\"28.7\"", "\"9933\"", "\"536\"",
tu‘talPupString = Callﬂa[kﬂrray[ﬂ] "\"3131\"" ll\ll194\llll "\"927\|n| ll\ll
vacantUnits5tring = callBackArray[4] e T ens T T A I Y\ TIA A\ ees
occupiedUnitsString = callBackArray[5] 540\"", "\"387\"", "\"42\"", "\"101\"",
ownerOccupiedString = callBackArray[6] "\"038300\"]1"]

renterf0ccupiedstring = callBackArray [7]

Clearly it's very ugly! First the
elements of the array were sorted

[;izn:n{aﬂggig;ﬁ?aﬂageStrlng.cnmpnnentsieparatedByStrmg{ ™ into variables named after the

let medAgeD = medAgeArray[1].stringByReplacingOccurrences0fString{"\"", withString: "", options: demographic they represent. For
N5StringComparelptions.LiteralSearch, range: nil) ; : — mn wn

let medIncomel = incomeString.stringByReplacinglccurrences0fString("s"", withString: ", options: example’ mcomeStrlng \"9933\
M5StringComparelptions.LiteralSearch, range: nil)

let medRentD = medRentString.stringByReplacingOccurrences0fString("\"", withString: "", options: 2 Next, the elements of the call back
M5StringCompare0ptions.LiteralSearch, range: nil) .

let totalPopD = totalPopString.stringByReplacinglccurrencesdfString("y"", withString: "', options: array are escaped from their double
NSStringCompareOptions.LiteralSearch, range: nil) quotes. The first and last elements of

let vacantUnitsD = vacantUnitsString.stringByReplacingdccurrences0fString("\"", withString: "", options: the callback array also have
NSStringComparelptions.LiteralSearch, range: mil)

let occupiedUnitsD = occupiedUnitsString.stringByReplacingOccurrences0fString(*y"", withString: "*, the brackets removed from them.

let

let

print{renter0ccupiedD)

options: MSStringComparelptions.LiteralSearch, range: nil)

ownerlccupiedDd = ownerOccupied5tring.stringByReplacinglccurrences0fString(™y"", withString: "", : .
options: MSStringComparefptions.LiteralSearch, range: nil) .Now.that there are varlgbles WhI_Ch
renterOccupiedd = renterOccupiedString.stringByReplacingDccurrencesDfString(”\"", withString: "*, contian the demographics as strings,

options: MSStringComparelptions.LiteralSearch, range: nil) they are converted to Doubles and
added to the universalArray, so they

universalArray.append(Double(medAgeD)!) can be accessed in other scenes.
universalArray.append{Double{medIncomeD) !) The universal array ends up being 40
universalArray.append(Double{medRentD) 1] .
universalArray.append({Double(totalPopD)!) elements long, 8 for each year, as it
universalArray.append{Double(vacantUnitsD) !} is not reset between API Calls. The

universalArray.append (Double({occupiedUnitsD)!)
universalArray.append(Double{ownerOccupiedD)!)

universalArray is only reset when a

universalArray.append{Double(renterOccupiedD)!) new address is searched.

Graph Picker Scene

import UIKit

var Array2eld
var Array2@l3
var Array2el2
var Array2ell
var Array2ele

[Double] ()
[Doublel ()
[Double] ()
[Double] ()
[Doublel ()}

class ViewControllerGraphPicker: UIViewController {

override func viewDidLoad({) {

super.viewDidLoad()

let background = CAGradientlLayer().turguoiseColor()
background. frame = self.view.bounds

self.view. layer.insertSublayer({background, atIndex: @)

Array2@l4 = Array({universaldrray[8...7]1)
print{Array2aid)

Array2813 = ArrayluniversalArray[8...15])
print{Array2aii)

Array2@812 = ArrayluniversalArray[16...23])
print{Array2@iz}

Array281l = Arrayluniversalarray[24...31])
print{Array281l)

Array2818 = Arrayl{universalarray[32...39])
print{Array2@1a)

New global variables are set up so
that the universalArray can be broken
into 5 smaller arrays based on year.

After the view loads and the gradient
background is set, the universalArray
is broken up. Oddly enough, an array
slice is a different type of object than
an array, so the Array() function must
be called to reconvert the
universalArray slice into an array
again.

As one can see, the universalArray is
split sequentially in the order the
updatelPFCC function was called in
the Map Places Scene.

The year arrays contain demographic
information at the following indicies:
0.Median Age

1.Median Income

2.Median Rent

3.Total Population

4.Vacant Units

5.0ccupied Units

6.0wner Occupied Units

7.Renter Occupied Units

Median Income Graph Scene - Local Variables

ir".pc-r't UIKit

import Charts

class MedianIncome: UIViewController {

@IBAction func saveChart(sender: AnyObject) {
LineChartView. saveToCameraRol1()

}
gIB0utlet weak var lineChartView: LineChartView!

override func viewDidlLoad() {
super.viewDidLoad()

let background = CAGradientlLayer().turquoiseColor()
background. frame = self.view.bounds
self.view. layer. insertSublayer(background, atIndex: @)

i
self.title = searchText n
let years = ["2018","2011","20812","2013", "2014"]

let values = [Array2@816([1],Array2811[1],Array2812([1],Array2813[1],Array2814[111]

setlLineChart{years, values: wvalues)

To avoid being overly repetitive, only one
graph scene will be discussed.

The Charts library contains classes for line
charts, bar charts, donut charts, etc. It was
downloaded from GitHub.

In the upper right corner of every graph
scene is a button for saving the graph to the
camera roll. Swift accomplishes this in just
one line of code.

The line chart class in the UlView is
referenced.

The title displayed on the top navigation bar
is set to the address searched in the Map
Places Scene. This is so that the user
knows which address the graph
corresponds to, if they save the graph to
their camera roll.

The values array is a collection of the
second elements in the demographics array
of each year. As noted on the previous
slide, this corresponds to Median Income.
setLineChart creates the chart, and will be
discussed on the next page.

Median Income Graph Scene - Set Graph Function

func setLineChart({dataPoints: [Stringl, values: [Double]} {

var dataEntries: [ChartDataEntry] = []

for i in @8..<dataPoints.count {
let dataEntry = ChartDataEntry(value: values[i], xIndex: i)
dataEntries.append(dataEntry)

}

'Let LineChartDataSet = LineChartDataSet(yVals: dataEntries, label: "Median Rent (dollars)")

LineChartDatabet.
LineChartDataSet.
LineChartDataSet.
LineChartDataSet.
LineChartDataSet.
LineChartDataSet.
LineChartDataSet.
LineChartDataSet.
LlineChartDataSet.

axisbDependency = .Left // Line will correlate with left axis walues
setColor{UIColor.greenColor().colorWithAlphaComponent (B.5))
setCircleColor{UIColor.greenColor())

LineWidth = 2.8

circleRadius = 6.8

fillAlpha = 65 F 255.8

fillColor = UIColor.blueColor(}

highlightColor = UIColor.whiteColaor()

drawCircleHoleEnabled = true

let data: LineChartData = LineChartData(xVals: dataPoints, dataSet: lineChartDataSet)
data.setValueTextColor{UIColor.blackColor())

lineChartView.descriptionText =

LineChartView.

LineChartView.
LineChartView.
LineChartView.
lineChartView.
LineChartView.
LineChartView.

LineChartView.

data =

data

leftAxis.axisMinValue = @
rightAxis.drawlLabelsEnabled = false
»Axis. labelPosition =
rightAxis.drawGridLinesEnabled =
xAxis.avoldFirstLastClippingEnabled = true
xAxis.setlabelsToSkip(@)

«Bottom
false

animate{xAxisDuration: 2.8, yAxisDuration: 2.@)

8

[

8

setLineChart takes two values, our labels
corresponding to each year, and the
median income values.

First, the function creates an empty array
full of a type unique to the Charts library,
ChartDataEntry. Then, the function loops
through every median income value, and
adds them to the dataEntries array.

Next, the y values of the line chart are set
to the dataEntries Array.

These methods set the appearence of
the line chart graph: which axis is
labeled, what color to set the line, etc.

Set the x-values to years, and the color of
the labels.

Finally, set the minimum value on the y-
axis scale to 0, put the x-axis labels on
the bottom, and animate the creation of
the line chart upon loading the scene.

Land Value Scene - Set Variables

import UIKit

class LandValueCalculator: UIViewController {
2IB0utlet weak var averageRentLabel: UILabel!
@IB0utlet weak var averageVacancyRatelabel: UILabel!
@IB0utlet weak var averageRen: UITextField!
2IB0utlet weak var numOfUnits: UITextField!
2IB0utlet weak var vacancyRate: UITextFiela!
@IB0utlet weak var expenses: UITextField!
@IB0utlet weak var capRate: UITextField!
@IB0utlet weak var constructionCost: UITextField!
@IB0utlet weak var parcelSize: UITextField!

@IB0utlet weak var landPrice: UILabel!

override func viewDidload({) {
super.viewDidLoad()

setLabels[]

¥

EIEActian func getLandPrice(sender: AnyObject) {

let
let
let
let
let
let
let

averageRentD = Double(self.averageRen.text!)
numdfUnitsh = Double(self.numOfUnits.text!)
vacancyRatel = Doublelself.vacancyRate.text!)

expensesD = Double(self.expenses.text!)

capRatel = Double(self.capRate.text!)

constructionCostD = Double(self.constructionCost.text!)
parcel5izel = Double(self.parcelSize.text!)

() The Calculate Land value scene is
intended to aid the user in land price
negotiation. If the ultimate output of the
land value calculator is less than the
asking price for the land, then the deal is
not profitable.

The inputs into the land value calculator
are doubles corresponding to:

1. Rent

2. Vacancy Rate

3. Number of Units

4 Yearly Expenses (things like
lighting in common areas)
Cap Rate
Construction
7. Parcel Size in Square feet

oo

MarketStudy does not automatically give
the user the inputs into the land
calculator, but where there are overlaps
between the American Community
Survey demographic information,
suggested inputs are portrayed. This is
what the setLabels function does.

Upon clicking the calculate button, all of
the text input strings are converted to
doubles.

Land Value Scene - Calculate Land Value and Set Labels

The land value calculation is borrowed from John
Landis’s Introduction to Property Development
class, and is based on the net rent derived from a

C] let grossRent = 12 = averageRentD! = (numdfUnitsD! = (l1-vacancyRateD!))
print{grossRent)

Mt ML = aressfent ~ sxpensesiil property one year after construction is completed.

print{MOI}

let totalDevwValue = (NOI/fcapRateD!) — constructionCostD! To calculate the gross rent, mu|tip|y the inputted
per unit monthly rent multiplied by 12, then

print({totalDevValue) multiply again by the number of units taking into

et perag v die. = tukal DealVan ue/pHece S12aD | account what percentage of them will be vacant.

let persqftValueText = String({format:"%f.1", perSgftValue) Then, subtract expenses

self.landPrice.text = "§" + perSqftValueText
¥ Next, the divide the NOI (net operating income)
C]fuq.:; st abelaly 4 by the cap rate, and subtract construction costs
Let avqﬁent; i_-l*_l'aﬁ@l;[ll o e i from this value. Finally, divide this value by the
Let averageRentText = String{format:"%f.1", avgRent .
SRt H auargatentiahals Cat. = %8 ¢ averagaRantTEs size of the parcel to get the per square foot land

value.
let avgVacancy = (Array2014[4]/(Array2014[5] + Array2814[4]))

let averageVacancyText = String({format:"%f.1", avgVacancy) ,
self.averageVacancyRatelLabel. text = averageVacancyText Again, if this land value is less than the owner’s

asking price, it's a bad deal!

Two of the land value calculator inputs overlap
C]with the Census API information, average rent
and vacancy rate within the tract where the
address falls. Both are displayed in the Land

Value Scene as suggestions for inputs.

Data Presentation

The major stylistic inspirations for the design of MarketStudy are the FitBit app and censusreporter.org. FitBit’s
minimalist introductory scene alerts the user that the app is both professional, and likely to run well.
MarketStudy borrows FitBit's blue and turquoise gradient color scheme, and initial welcoming dialogue. A
comparison between the introduction scenes of both the apps is shown below:

Welcome to MarketStudy.
Search your address on the next page,
then press the action button to look at

demographics.

Get Started >

The graphs scenes, on the other hand, were inspired by censusreporter.org. Their muted color scheme informed
the graph colors in MarketStudy. Unlike MarketStudy, however, censusreporter.org does not contain any line
graphs, however, as it only reports on one year of the census at a time.

Testing

This being the first time [have ever programmed in Swift, or any Object Oriented language, most of my
time was spent dealing with errors. Most of these had to do with wrapping variables, and setting their type.
Recall that wrapped variables can be set to null (called nil in Swift) while unwrapped variables cannot.If an
operation did not go through, and a variable ended up with a nil value, Swift would throw an error that a value
was unwrapped, instead of telling you where its value failed to be assigned. As mentioned earlier, Swift is an
incredibly type specific language. Doubles and integers cannot be used in the same operation, for example.

The API calls were another major source of error. If there was a problem in the built call, there was no
way to print the http error response in the console. Adjusting Swift security permissions was also a major source
of pain. It is for this reason the Zillow API was not called, as was originally planned. Finally, the API's built the
universalArray asynchronously. The FCC and Census APIs are fast enough to get this done before the Graph
Picker scene loads 90% of the time, but occasionally an error is thrown where the universalArray failed to build.

Finally, as far as the user experience is concerned, a few decisions were made based on user testing. I
had some friends play with my app (on my computer) in the study room, and took their feedback to improve the
MarketStudy Ul. The main page was criticized for looking simple to the point of being obviously a novice’s work.
Thus, the text fade in was added. User feedback helped most with the graph scenes. Previously the graphs only
showed pointlabels upon touch, but this was deemed unintuitive. A major source of frustration was my inability
to work out the aesthetics of the Land Use Calculator scene, which everyone agreed was too busy yet also too
unstyled.

Conclusion

I still have a few more minor adjustments to make before MarketStudy is ready for the App Store. Most
of these are visual. I never was entirely happy with the look of the Land Value Calculator Page. There is so much
information on screen that a gradient background looks busy, but a white background looks amateurish. In the
months to come, [will reformat it to fit user entry formsin a table. The Charts package fori0S is worth further
exploration. Currently the charts look very neat, but uninteresting. The labeling of the line graph points is also
slightly out of bounds on the left. Further error handling is also necessary. Currently, if the user searches for an
address located in another country, the Graph Picker Scene simply does not load. Similarly, the user can enter
negative and zero values in the land value calculator, and still calculate (nonsensical) results. There should be a
customized error popup for these events, this is not particularly difficult code to write, but was cut due to time
constraints.

As far as further directions are concerned, two possibilities exist. One is to go farther down the real
estate rabbit hole. Try again to get the Zillow API to work, and look into pulling other demographics from the
Census API The Census APl isrich in information, even continuing demographics about how residents commute
to work. However, calling too much from the API could slow down the app a lot. Even the neighborhood
Walkscores could be of interest. Before 2010 there are no Census API's with housing information, but updating
the time graphs to go until 2015 would be prudent.

The other direction for further possibilities is to use the API calling and mobile mapping skills I've
learned to shift to create an app that parses and maps JSON or Geo]JSON files. This idea was abandoned because
the Census API outputs an array of two arrays, rather than a javascript object. However, there are currently no
apps that offer a way of mapping user uploaded JSON, which is alarge niche to fill. This would involve using the
DropBox API to share a JSON file into the i0S app. While the GeoJSON app project sounds difficult, the greatest
joy I gained from building MarketStudy is that I the ability to take an idea for an app, and begin to think of the
concrete steps [would need to create it.

Gallery
Intro Scene

Welcome to MarketStudy.
Search your address on the next page,
then press the action button to look at

demographics.

Get Started >

Q_ [4400 spruce street philadel @ = Cancel

Map Places Scene

11:32 PM] 11:32 PM

Carrier &

™

Map Places

Q

Toronto
) @T
" -
o
New York

B té
ogotd |

Graph Picker Scene

Carrier 11:33 PM

< Map Places

Vacant vs Occupied

Renters vs Owners

Population

Median Income

Vacancy

North
O

Carrier ¥ 11:32 PM]
M Map Places Q
R E— o =
N & 3 &
Wave =\ ®, O
ps% %, Q.\‘?o
Bryn Mawr N %
A oBalaﬁCynwyd 572
E‘:{ord A Wunnawaad- ‘B\jl' @ E Erie Ave
:

I3

4400 spruce street philadelphia pa

E A=

n
) ; >
@ E oUpper DarbTi .\\3_7 / /‘/

‘_”o 'PHILADELPH;I’A N
i S) =
% | %
o f)<
Yeadon [(, %5»,
Aldan
o A s
N Darby Sl Woodlynne
ollingdale Patt; e \
9 S akt""ff/e Audﬁlbon‘,‘ParI
rd Glenolden = o o
3 NS v Glou
| Norwood, ” gE=——
Y2 "0 & Brooklawn®
Philadelphia~ Westvill
jton International P | 3\
Airport (PHL) 1
_____ = Z
Thorofare
Legal = (o]
Paulsboro™ Waadhury
[

Land Value Calculator

Graph Scene

Carrier & 8:26 PM mmm Carrier ¥ 8:28 PM —

£ 4400 spruce street phil... Save < 4400 spruce street phil... Save

1,000 | |
933
900 839
"N 5 838
800
600
400
1,837
Occupied
200
0
2010 201 2012 2013 2014
M Vacant M Occupied B Median Rent (dollars)

Land Value Scene

Carrier & 8:26 PM mm Carrier & 8:27 PM 1

¢ Back Land Value Calculator < Back Land Value Calculator
Average Rent per Unit $0 Average Rent per Unit 855
The average rent is: $835.00... The average rent is: $835.00...
Number of Units 0 Number of Units 20
Expected Vacancy Rate 0% Expected Vacancy Rate 0.15228
The vacancy rate is: 0.15228... The vacancy rate is: 0.15228...
Expected Yearly Expenses $0 Expected Yearly Expenses 10000
Expected Cap Rate 0.058 Expected Cap Rate 0.058
Construction Cost $0 Construction Cost 100000...
Parcel Size 0 sqft Parcel Size 80000

Calculate Land Price Calculate $-1214.665486.1

Resources

1. Introduction to Swift, iTunes U:
https://itunes.apple.com/us/course/developing-ios-8-apps-swift/id961180099

2. Introduction to Swift, Apple Conference: https://www.youtube.com/watch?v=A0C6L4XmrZM

3. Charts Tutorial AppCoda: http://www.appcoda.com/ios-charts-api-tutorial/

4. Charts Library GitHub Repository: https://github.com/danielgindi/Charts

5. Charts Tutorial RayWenderlich:
https://www.raywenderlich.com /90693 /modern-core-graphics-with-swift-part-2

6. Making Rest Calls with Swift Tutorial: http://www.deegeu.com/ios-swift-rest-json-tutorial/

7. Rest Calls with Swift Example Code: https://github.com/deege/deegeu-swift-rest-example

8. Adding Gradient Backgrounds in Swift VideoTurorial:
https://www.youtube.com/watch?v=pabNgxzEaRk

9. MapKit Tutorial by SweetTutos:
http://sweettutos.com/2015/04 /24 /swift-mapKit-tutorial-series-how-to-search-a-place-address-or-p

oi-in-the-map/

10. Federal Communicaitions Comission Census Block Conversions API:
https://www.fcc.gov/general /census-block-conversions-api

11. Census Bureau American Community Survey API:
https://www.census.gov/data/developers/data-sets/acs-survey-5-year-data.html

