

Abstract

Several iOS apps exist which use U.S. Census American Community Survey

housing data, but none are geared towardshousingdevelopment. Thebeginning

of this paper justifies the creation of one such an app, named MarketStudy. The

bulk of this paper is dedicated to explaining how MarketStudy was created, and

detailing its functionality using examples of Swift code. Finally, major design

choices and causes of common error are explained. This paper concludes

suggestions for further directions MarketStudy could be taken in.

Introduction

The number one mistake amateur real estate developers make is paying toomuch for land. As

with many economic inefficiencies, overpaying for land stems from the purchaser’s lack of perfect

information. In other words, the more thebuyer in a real estate transaction canknowabout themarket

surrounding a parcel, the better deal he or she is likely to receive. This effect is not limited to real estate

developers. A prospective renter touring several apartments is better off knowing the median rent of

the area in which they are leasing. A small businessman looking to open up a storefront in a

neighborhood would be well aided by knowing its average income. Most real estate transactions occur

without the ability of a purchaser to conduct an extensive market study. Whether they know it or not,

most buyers of real estate are looking to see if their prospective property followsWaldoTobler’s First

Law of Geography. The First Law of Geography states that “everything is related to everything else, but

near things are more related than distant things.” Real estate pricing follows this law, as thehackneyed

adage goes “location, location, location.”

An app that could pull up American Community Survey (ACS) information surrounding a

location would bring Tobler’s Law right into the pocket of the purchaser. This dataset contains

everything from what percentage of their income the average resident of a census block spends on rent,

to the most common form of transportation they take to work. This is not to imply, however, that the

ACS is the only useful dataset out there for real estate buyers. Say, for example, a prospective

homebuyer is conscious of howclose to ahome is to local elementary schools, this data is unavailable to

the census. That being said, Revenue from a property is derived from rents and vacancy, and t he best

indication of how much revenue a developer can expect to make from a project are the rents and

vacancy of the surrounding area. By having the materials make a revenue projection on at their

fingertips, hopefully the app will aid in land price negotiation for both sides. As the negotiated land

price rises or falls, the developers coulddynamically see how landprice affects their projected revenue,

and both sides could more easily to a mutually profitable agreement.

Objective

Produce an iOS application for use on the iPhone that gives users information about the housing and

demographic characteristics of the area around a given address using data from the U.S. Census, and the

ability to use this data to calculate land value.

Rationale

As was touched upon in the introduction, MarketStudy does not undertake any analysis aside

fromcomputing landvaluebasedonuser inputs. The apponly exists for convenience. Two scenarios for

its use come to mind: if a developer is in the field andwants to dopencil out projections ofwhether or

not a project will be profitable, and in a land purchase negotiation where adeveloper quickly needs to

adjust their pencil out model to accommodate for fluctuating land price offers.While those may be

limited use cases, the app fills a unique niche on iOS. The major differences betweenMarketStudy and

other major apps which pull from the Census API are as follows:

First, the Census Bureau’s own demographics app, Dwellr . Dwellr only offers information on

the state, county, and municipal levels. MarketStudy, on the other hand, delivers information on the

smallest available level, the census tract. The census tract is the superior geographical unit for an app

built for comparing neighborhoods for two reasons. First, it controls for population. Every census tract

contains an estimated 4,000 people. This allows for comparisons across differentmarkets in away that

municipal level data does not. Comparing the rental apartment market of Philadelphia and

WilkesBarre is almost meaningless due to the population discrepancy. Second, residential real estate

is hyperlocal. The vacancy rate for residential buildings across Philadelphia is 7.14%, but in Center

City, it is 1.3%. The point is, municipal level data just doesn’t cut itwhen it comes tomaking real estate

decisions. Some third party apps like Pocket Census have the same issue.
Zillow and Trulia offer very localized real estate data, but donot offer information about how

this data has changed over time. This is because those apps and MarketStudy are appealing to two

different audiences. Apartment seekers are concerned with the variety of different rents in an area,

while apartment developers aremore concernedwith the average rent of an area and if its increasing or

decreasing over time. Moreover, the American Community Survey offers more indepth rent

information: it draws from currently occupied apartments rather than ones for sale.

Sitewise, Census+, and Your Census Info are all amature which all share similar problems.

None of them display incomedata, their user interfaces donot reflect thoughtful design, and like Zillow,

they do not display demographic change over time.

Methodology

Development

Swift was an entirely new language to me before started this semester. Not only was it a new

language, it was a new type of language. The rules of the scripting languages I had learned no longer

applied in the object orientedworld. Themajor differencebetween the two is that Swift, being anobject

oriented programming language, contains all of its functionality within classes. Classes are models of

the real, tactile elements of the project. Each page of the app has a class. A language like Javascript, on

the other hand, operateswith universal functions. Universal functions canbeused to solve aproblem in

any part of the project. It is possible to doobject orientedprogramming in Javascript of course, but it is

mandatory to do it in Swift.
Switching to an object oriented language entailed looking at problems in an entirely newway.

As mentioned above, classes correspond to real elements of the project. There was a class for the

mapping page, a class for all of the graphpages, etc. Building the app, I proceededpagebypage, or class

by class, adding all the functionality Iwantedoneachonebeforemoving on to thenext. If I ran into any

errors, they were contained on one page of my app. Interactivity between classes was confined to a

single global variable. This is directly different from how one approaches problems in aprocedural, or

scripting, environment. In a scripting environment, one looks at the larger goal, and breaks it into

smaller and smaller subgoals, that eventually into such small components that they can be

accomplished using the methods inherent to the language one is using. Changes to one of the small

components of a procedurally written script changes everything , as everything interacts with

everything else. Coding in a scripting environment forces one to look at their problemas a set of actions,

in contrast, Swift forced me to break down my project based on its visual components,

compartmentalizing my work for each page of the app.

I first began to learn Swift with the Stanford Introduction to Swift lectures on iTunes U, but

quickly found I learned faster by getting my hands dirty. That is, by actually building the app, and

solving the many errors inherent in amateaur coding. This method involved doing a tutorial for every

piece of functionality I wanted to add to the app: geocoding, API Calls, fading elements in andout, etc.

MarketStudy is thus a Frankenstein’s monster of pieces of code fromdifferent tutorials that havebeen

altered to fit my specific purposes. An outline of the workflow of my app is shown below:

Each of the methods in the graphic above does not correspond to a page in the MarketStudy app.

Rather, all of the methods take place in theMapPlaces Scene. To avoid any confusion, take a look at the

graphic below. The user proceeds sequentially through each of these scenes, from left to right. Larger

photos can be seen in the gallery section:

Intro Scene Map Places Scene Graph Picker
Scene

Graph Scenes Land Value
Scene

The following section proceeds sequentially through the classes which control each of these scenes. The

Swift code will be shown on the left, and points of interest will be explained on to the right and below.

Only one example of the six graph scenes will be shown, as the code between them contains major

overlap.

�8,.LW�LV�WKH�PDLQ�OLEUDU\��RU�IUDPHZRUN��DV�6ZLIW�FDOOV�LW��IRU�L26�DSSV��LW�
ZLOO�EH�FDOOHG�LQ�HYHU\�VFHQH��,W�KDQGOHV�DOO�LQWHUDFWLRQV�ZLWK�WKH�HOHPHQWV�
VHHQ�RQ�WKH�SKRQH��EXWWRQV��WH[W��HWF�

&ODVVHV�DUH�ZKDW�6ZLIW�FDOOV�REMHFWV��WKHUH�LV�RQH�IRU�HYHU\�VFHQH��7KH�
QDPH�RI�WKLV�FODVV�LV�LQWUR6FHQH�DQG�LW�LV�RI�W\SH�8,9LHZ&RQWUROOHU��ZKLFK�
PHDQV�LW�FRUUHVSRQGV�WR�RQH�RI�WKH�SDJHV�RQ�WKH�DSS��6ZLIW�LV�D�YHU\�W\SH�
VSHFLILF�ODQJXDJH��VR�HYHU\�GHILQLWLRQ�LQFOXGHV�D�FRORQ��WKHQ�WKH�W\SH�RI�
ZKDW�LV�EHLQJ�GHILQHG�

$Q\WKLQJ�WKDW�KDSSHQV�ZLWKLQ�WKH�YLHZ'LG/RDG�IXQFWLRQ�RFFXUV�ZKHQ�WKH�
VFHQH�ORDGV��7KH�RYHUULGH�FKDUDFWHULVWLF�LV�DWWDFKHG�WR�WKH�IXQFWLRQ�
GHILQLWLRQ�EHFDXVH�YLHZ'LG/RDG�LV�GHILQHG�LQ�HYHU\�VFHQH��DQG�6ZLIW�LV�
YHU\�VHQVLWLYH�DERXW�LQVWDQFHV�ZLWK�WKH�VDPH�QDPH�

7KHVH�WKUHH�OLQHV�FDOO�WKH�EDFNJURXQG�VHWWLQJ�IXQFWLRQ��VHW�XS�LQ�DQRWKHU�
6ZLIW�GRFXPHQW��7KH�VHOI�YLHZ�ERXQGV�FDOO�UHIHUV�WR�WKH�DUHD�RI�
LQWUR6FHQH�WKDW�IDOOV�ZLWKLQ�WKH�L3KRQH�YLHZ��7KH�EDFNJURXQG�LV�VHW�WR�
LQGH[����PHDQLQJ�EHKLQG�HYHU\WKLQJ�HOVH�

�7KLV�LV�WKH�FDOO�RI�WKH�EXWWRQ�ZKLFK�OHDGV�WKH�XVHU�WR�WKH�QH[W�VFHQH��
7KHUH�LV�QR�SLHFH�RI�FRGH�ZKLFK�FRUUHVSRQGV�WR�WKDW��$OO�RQH�KDV�WR�GR�LV�
FDOO�WKH�EXWWRQ��DV�D�8,%XWWRQ�2EMHFW���DQG�FKRRVH�D�VHWWLQJ�LQ�WKH�6ZLIW�
XVHU�LQWHUIDFH��;&RGH�

7KLV�ODVW�IXQFWLRQ�RSHUDWHV�ZLWKLQ�JHW6WDUWHG%XWWRQ��DQG�IDGHV�LW�LQ��(YHU\�
��VHFWLRQV��WKH�JHW6WDUWHG%XWWRQ¶V�RSDFLW\��GHVFULEHG�DV�LWV�DOSKD�
PHWKRG��JHWV�FORVHU�WR����IXOO\�RSDTXH��

�

�

�

� �

��

�

�
�

�

�

�

 In Swift, extensions are places to add functionality to common types outside of a normal scene. The CAGradientLayer class is found within
the UIKit library, and refers to a gradient image. In this extension, we are adding a new function for it to recognize.

The function created in this extension sets the background gradient to between blue and turquoise. Swift reads colors in RGB as well as
hexadecimal format. Alpha refers to the opacity value.

The locations of these colors are 0.0, refering to the bottom of the screen, and 1.0 refering to the top. It’s possible, but ugly, to set more than
two colors in a gradient, at height values between 0.0 and 1.0.

Every function needs a return statement! Calling this function returns a CAGradientLayer, as defined in the “->” statement at the top.

1

1

3

2

2

3

4

4

MapKit is the library used for Apple Maps in iOS Apps. I decided to use
Apple Maps over Google Maps, because Google Maps uses a lot more
battery power, and I thought it would be easier to use the map software
native to the iOS environment.

The universalArray is the global variable where the values from the
Census API will be stored. The graph library I used takes double values,
so I specify it will be a list of doubles. The searchtext global string will be
set to whatever the user searches, and will be used for labeling elements
in other scenes.

The Corodinatinates structure holds coordinates. It will be filled using the
MapKit Geolocator, and then its values will be passed to the FCC
Census Block Conversions API. This structure and the ipBuilder do not
necessarily have to be a global variable since they’ll be used in this
 scene only, but I thought they may be useful if I
 wanted to add functionality.

The ipBuilder Structure holds integer values (implicitly defined here), that
correspond to different elements of the FIPS code, outputted by the FCC
API and used in the call for the Census API.

The Map Places scene contains three classes that control what the user
sees (ViewControllers). The view itself, defined on every page, the
search bar, and the map.

1

1

3

2

2

3
4

4

5
5

5

The local variables within the classes correspond to different elements of the Scene. The searchController is the search bar, the annotation
deals with any already existent pins on the map. The localSearchRequest contains the user inputted address, the localSearch carries out
the search, and the response contains the outputted coordinates. The error term handles the error popup if a searched address isn’t found.
The pointAnnotation and pinAnnotationView reference the pin and its label, respectively.

6

6

IBAction, as opposed to IBOutlet, defines an the
function which operates upon clicking an element of
the UIView. This function is tied to the top navigation
bar in the Map Places Scene, and makes the search
bar appear upon clicking it.

This is the map object. It’s worth noting here that
variables defined with exclamation points in Swift
cannot be set to null. Variables defined with let
instead of var are immutable.

This is the first of many blocks of code executed when
the search bar’s search button is clicked. It deals with
the consequences of previous searches. First it
removes the reference to them, then it makes the
search bar disappear. Finally, if there are pins
(annotations), it removes them.

1

1

3

2

4

4

3

2

The search bar text is turned into a natural language query. This means the MapKit search will not expect it to be a perfectly written
address, but rather one that is incomplete. This also means that if the user types in a point of interest search, the map will be able to
Geolocate that as well. When most users see a map in an application, they do not expect it to filter information for them. So on
MarketStudy too, the user can enter “coffeeshop” and find the nearest coffeeshop. Without this functionality, users might think that the
map is not working.

The start with completion handler line
calls the geolocation.

The error function first checks if the
completion handler for the
geolocation function is empty. If it is,
an alertController instance is created,
and an animated popup is created
telling the user the place was not
found. An example of this can be
seen in the gallery at the end of the
paper.

If the geolocation has been
performed successfully, and the
coordinates have been passed from
the address search to the pin variable
via the The localSearchResponse
class. The pin’s label is set to the text
of the address.

1

1

3

4

4

2
2

3

5

5

6

The coordinates are set to the attributes of the coors struct, so they can be used outside of the
searchbar function. The coors struct will be used later in building the call for the FCC Census Block
Conversion API.

The pin is actually dropped using the addAnnotation function from MapKit, and the map is centered
on that pin.

The updateIPFCC function preforms our API Calls, one for every year of the census we call

6

The global structure ipBuilder is
initiated, and the longitude and
latitude doubles from the coors
structure are converted into strings in
order to build the API Call.

The API Call is built.

The NSURLSession class is initiated,
called. By putting a question mark
after NSData, Swift is prepared to
receive a null value.

The guard statement checks if the
HTTP request is successful, we get a
200 response. If not, we print the
error statement in the console.

The code captures the data from the
FCC API as a String if the call was
made successfully. Finally, the
response FIPS code string is parsed
so that the correct components of the
ipBuilder are put in the right place.

1

1

3

4
4

2 2

3

5
5

We are still operating in the
updateIPFCC function, so the year
variable is available. Every time we
run the function, we call a different
year of the Census API.

The geography attribute is built using
the ipBuilder global structure.

Just like the FCC API Call, if there is
no 200 HTTP response, an error is
printed

The Census API returns a string that
contains two arrays seperated by a
line break. The first array is useless,
so the code splits the call back string
by a line break, then grabs the
second element. Next, the code
transforms the second of the array
like-strings into a real array by
splitting it every time a comma is
used.

1

1

3

4

4

2

2

3

An example of an output from the last
block of code is as follows:
["[\"28.7\"", "\"9933\"", "\"536\"",
"\"3131\"", "\"194\"", "\"927\"", "\"
540\"", "\"387\"", "\"42\"", "\"101\"",
"\"038300\"]]"]

Clearly it’s very ugly! First the
elements of the array were sorted
into variables named after the
demographic they represent. For
example, incomeString = "\"9933\""

Next, the elements of the call back
array are escaped from their double
quotes. The first and last elements of

 the callback array also have
the brackets removed from them.

Now that there are variables which
contian the demographics as strings,
they are converted to Doubles and
added to the universalArray, so they
can be accessed in other scenes.
The universal array ends up being 40
elements long, 8 for each year, as it
is not reset between API Calls. The
universalArray is only reset when a
new address is searched.

1
1

3

2

2

3

New global variables are set up so
that the universalArray can be broken
into 5 smaller arrays based on year.

After the view loads and the gradient
background is set, the universalArray
is broken up. Oddly enough, an array
slice is a different type of object than
an array, so the Array() function must
be called to reconvert the
universalArray slice into an array
again.

As one can see, the universalArray is
split sequentially in the order the
updateIPFCC function was called in
the Map Places Scene.

The year arrays contain demographic
information at the following indicies:
0.Median Age
1.Median Income
2.Median Rent
3.Total Population
4.Vacant Units
5.Occupied Units
6.Owner Occupied Units
7.Renter Occupied Units

1

1

2

2

To avoid being overly repetitive, only one
graph scene will be discussed.

The Charts library contains classes for line
charts, bar charts, donut charts, etc. It was
downloaded from GitHub.

In the upper right corner of every graph
scene is a button for saving the graph to the
camera roll. Swift accomplishes this in just
one line of code.

The line chart class in the UIView is
referenced.

The title displayed on the top navigation bar
is set to the address searched in the Map
Places Scene. This is so that the user
knows which address the graph
corresponds to, if they save the graph to
their camera roll.

The values array is a collection of the
second elements in the demographics array
of each year. As noted on the previous
slide, this corresponds to Median Income.
setLineChart creates the chart, and will be
discussed on the next page.

1

1

2

2
3

4

3

4

5

5

setLineChart takes two values, our labels
corresponding to each year, and the
median income values.

First, the function creates an empty array
full of a type unique to the Charts library,
ChartDataEntry. Then, the function loops
through every median income value, and
adds them to the dataEntries array.

Next, the y values of the line chart are set
to the dataEntries Array.

These methods set the appearence of
the line chart graph: which axis is
labeled, what color to set the line, etc.

Set the x-values to years, and the color of
the labels.

Finally, set the minimum value on the y-
axis scale to 0, put the x-axis labels on
the bottom, and animate the creation of
the line chart upon loading the scene.

1
1

2
2

3

4
3

4

5 5

6

6

The Calculate Land value scene is
intended to aid the user in land price
negotiation. If the ultimate output of the
land value calculator is less than the
asking price for the land, then the deal is
not profitable.

The inputs into the land value calculator
are doubles corresponding to:

1. Rent
2. Vacancy Rate
3. Number of Units
4. Yearly Expenses (things like

lighting in common areas)
5. Cap Rate
6. Construction
7. Parcel Size in Square feet

MarketStudy does not automatically give
the user the inputs into the land
calculator, but where there are overlaps
between the American Community
Survey demographic information,
suggested inputs are portrayed. This is
what the setLabels function does.

Upon clicking the calculate button, all of
the text input strings are converted to
doubles.

1

1

2

2

3

3

The land value calculation is borrowed from John
Landis’s Introduction to Property Development
class, and is based on the net rent derived from a
property one year after construction is completed.

To calculate the gross rent, multiply the inputted
per unit monthly rent multiplied by 12, then
multiply again by the number of units taking into
account what percentage of them will be vacant.
Then, subtract expenses.

Next, the divide the NOI (net operating income)
by the cap rate, and subtract construction costs
from this value. Finally, divide this value by the
size of the parcel to get the per square foot land
value.

Again, if this land value is less than the owner’s
asking price, it’s a bad deal!

Two of the land value calculator inputs overlap
with the Census API information, average rent
and vacancy rate within the tract where the
address falls. Both are displayed in the Land
Value Scene as suggestions for inputs.

1
1

2

2

Data Presentation

The major stylistic inspirations for the design ofMarketStudy are the FitBit app and censusreporter.org. FitBit’s
minimalist introductory scene alerts the user that the app is both professional, and likely to run well.
MarketStudy borrows FitBit’s blue and turquoise gradient color scheme, and initial welcoming dialogue. A
comparison between the introduction scenes of both the apps is shown below:

The graphs scenes, on the other hand,were inspiredby censusreporter.org. Theirmuted color scheme informed
the graph colors in MarketStudy. Unlike MarketStudy, however, censusreporter.org does not contain any line
graphs, however, as it only reports on one year of the census at a time.

Testing

This being the first time I have ever programmed in Swift, or anyObjectOriented language,most ofmy
time was spent dealing with errors. Most of these had to do with wrapping variables, and setting their type.
Recall that wrapped variables can be set to null (called nil in Swift) while unwrapped variables cannot.If an
operation did not go through, and a variable ended up with a nil value, Swiftwould throwanerror that a value
was unwrapped, instead of telling you where its value failed to be assigned. As mentioned earlier, Swift is an
incredibly type specific language. Doubles and integers cannot be used in the same operation, for example.

The API calls were another major source of error. If there was aproblem in thebuilt call, therewasno
way toprint thehttp error response in the console. Adjusting Swift security permissionswas also amajor source
of pain. It is for this reason the Zillow API was not called, as was originally planned. Finally, the API’s built the
universalArray asynchronously. The FCC and Census APIs are fast enough to get this done before the Graph
Picker scene loads 90% of the time, but occasionally an error is thrown where the universalArray failed to build.

Finally, as far as the user experience is concerned, a few decisions were made based on user testing. I
had some friends playwithmyapp (onmycomputer) in the study room, and took their feedback to improve the
MarketStudy UI. Themainpagewas criticized for looking simple to thepoint of being obviously a novice’swork.
Thus, the text fade in was added. User feedback helped most with the graph scenes. Previously the graphs only
showedpoint labels upon touch, but thiswasdeemedunintuitive. Amajor source of frustrationwasmy inability
to work out the aesthetics of the Land Use Calculator scene, which everyone agreed was too busy yet also too
unstyled.

Conclusion

I still have a few more minor adjustments tomakebeforeMarketStudy is ready for theAppStore.Most
of these are visual. I never was entirely happywith the lookof the LandValueCalculator Page. There is somuch
information on screen that a gradient background looks busy, but a white background looks amateurish. In the
months to come, I will reformat it to fit user entry forms in a table. TheCharts package for iOS isworth further
exploration. Currently the charts look very neat, but uninteresting. The labeling of the line graph points is also
slightly out of bounds on the left. Further error handling is also necessary. Currently, if the user searches for an
address located in another country, the Graph Picker Scene simply does not load. Similarly, the user can enter
negative and zero values in the land value calculator, and still calculate (nonsensical) results. There shouldbe a
customized error popup for these events, this is not particularly difficult code to write, butwas cut due to time
constraints.

As far as further directions are concerned, two possibilities exist. One is to go farther down the real
estate rabbit hole. Try again to get the Zillow API to work, and look into pulling other demographics from the
Census API. The CensusAPI is rich in information, even continuingdemographics about howresidents commute
to work. However, calling too much from the API could slow down the app a lot. Even the neighborhood
Walkscores could be of interest. Before 2010 there are no Census API’swith housing information, but updating
the time graphs to go until 2015 would be prudent.

The other direction for further possibilities is to use the API calling and mobile mapping skills I’ve
learned to shift to create an app that parses and maps JSONorGeoJSON files. This ideawas abandonedbecause
the Census API outputs an array of two arrays, rather than a javascript object. However, there are currently no
apps that offer a way of mapping user uploaded JSON,which is a largeniche to fill. Thiswould involve using the
DropBox API to share a JSON file into the iOS app. While the GeoJSON app project soundsdifficult, the greatest
joy I gained from building MarketStudy is that I the ability to take an idea for an app, and begin to think of the
concrete steps I would need to create it.

Gallery

Intro Scene

Map Places Scene

Graph Picker Scene

Graph Scene

Land Value Scene

Resources

1. Introduction to Swift, iTunes U:
https://itunes.apple.com/us/course/developingios8appsswift/id961180099

2. Introduction to Swift, Apple Conference: https://www.youtube.com/watch?v=A0C6L4XmrZM

3. Charts Tutorial AppCoda: http://www.appcoda.com/ioschartsapitutorial/

4. Charts Library GitHub Repository: https://github.com/danielgindi/Charts

5. Charts Tutorial RayWenderlich:

https://www.raywenderlich.com/90693/moderncoregraphicswithswiftpart2

6. Making Rest Calls with Swift Tutorial: http://www.deegeu.com/iosswiftrestjsontutorial/

7. Rest Calls with Swift Example Code: https://github.com/deege/deegeuswiftrestexample

8. Adding Gradient Backgrounds in Swift VideoTurorial:
https://www.youtube.com/watch?v=pabNgxzEaRk

9. MapKit Tutorial by SweetTutos:

http://sweettutos.com/2015/04/24/swiftmapkittutorialserieshowtosearchaplaceaddressorp
oiinthemap/

10. Federal Communicaitions Comission Census Block Conversions API:

https://www.fcc.gov/general/censusblockconversionsapi

11. Census Bureau American Community Survey API:
https://www.census.gov/data/developers/datasets/acssurvey5yeardata.html

